Message Boards Message Boards

Exponent optimization with constrains

Posted 10 years ago

Hello, I'm trying to find an optimization for each player (each one has a utilitiy function) with constraints. the problem has an exponent factor. I don't know how to construct the problem in mathematica and to find a feasible solution for each player (or potentialy an equilibrium).

Thanks!

Attachments:
POSTED BY: yossi sh
5 Replies
Posted 10 years ago

Can you provide any additional constraint information?

In[1]:= s = 95;
u = 0.1;
x = 100;
k = 0.01;
Subscript[c, A] = (Subscript[p, A]*(s*(1 + u) - x)) + k;
Subscript[c, B] = (Subscript[p, B]*(s*(1 + u) - x)) - k;
Subscript[Z, A]=(1-(v-Subscript[c,A])/(Subscript[c,B]-Subscript[c,A]))^\[Beta] (v-Subscript[c,A]) ;
Subscript[Z, B]=(1-(v-Subscript[c,B])/(Subscript[c,B]-Subscript[c,A]))^\[Alpha] (Subscript[c,B]-v);
Maximize[{Norm[Subscript[Z, A]] + Norm[Subscript[Z, B]], Subscript[c, A] <= v <= Subscript[c, B]},
   {v, \[Alpha], \[Beta], Subscript[p, A], Subscript[p, B]}]

During evaluation of In[61]:=NMaximize::cvdiv:Failed to converge to a solution. The function may be unbounded.

Out[68]= {1.945590892669753*10^514, {v -> -48.2786, \[Alpha] -> 56.0364, \[Beta] -> -102.072,
   Subscript[p, A] -> -52.0972, Subscript[p, B] -> -10.7259}}
POSTED BY: Bill Simpson
Posted 10 years ago

0<=Pa<=1, 0<=Pb<=1

POSTED BY: yossi sh
Posted 10 years ago
In[1]:= s = 95; u = 0.1; x = 100; k = 0.01;
Subscript[c, A] = (Subscript[p, A]*(s*(1 + u) - x)) + k;
Subscript[c, B] = (Subscript[p, B]*(s*(1 + u) - x)) - k;
Subscript[Z, A] = (1-(v-Subscript[c,A])/(Subscript[c,B]-Subscript[c,A]))^\[Beta](v-Subscript[c,A]);
Subscript[Z, B] = (1-(v-Subscript[c,B])/(Subscript[c,B]-Subscript[c,A]))^\[Alpha](Subscript[c,B]-v);
Maximize[{Norm[Subscript[Z,A]]+Norm[Subscript[Z,B]], Subscript[c,A]<=v<=Subscript[c,B] && 
   0<=Subscript[p,A]<=1 && 0<=Subscript[p,B]<= 1}, {v, \[Alpha], \[Beta], Subscript[p,A], Subscript[p,B]}]

During evaluation of In[1]:=NMaximize::cvdiv:Failed to converge to a solution. The function may be unbounded.

Out[9]= {3.97046*10^15, {v -> 0.101697, \[Alpha] -> 53.8285, \[Beta] -> -34.2923, Subscript[p, A] -> 0.0203771, 
  Subscript[p, B] -> 0.0799841}}

You may want to look at the values of each part of ZA and ZB to determine whether more constraints are needed or whether there is something about the way that I have done this which is incorrect.

POSTED BY: Bill Simpson
Posted 10 years ago

I think that Za and Zb should be maximized seperately. Is this what you've wrote?

POSTED BY: yossi sh
Posted 10 years ago

From the initial post I was guessing that you needed to maximize both of the items.

In[1]:= s = 95; u = 0.1; x = 100; k = 0.01; Subscript[c, A] = (Subscript[p, A](s(1 + u) - x)) + k; Subscript[c, B] = (Subscript[p, B](s(1 + u) - x)) - k; Subscript[Z, A] = (1 - (v - Subscript[c, A])/(Subscript[c, B] - Subscript[c, A]))^[Beta] (v - Subscript[c, A]); Subscript[Z, B] = (1 - (v - Subscript[c, B])/(Subscript[c, B] - Subscript[c, A]))^[Alpha] (Subscript[c, B] - v); Maximize[{Subscript[Z, A], Subscript[c, A] <= v <= Subscript[c, B] && 0 <= Subscript[p, A] <= 1 && 0 <= Subscript[p, B] <= 1}, {v, [Alpha], [Beta], Subscript[p, A],Subscript[p, B]}]

During evaluation of In[1]:=NMaximize::nrnum:The function value -0.113773+0.104822 I is not a real number at {v,[Alpha],[Beta],Subscript[p, A],Subscript[p, B]} = {1.24375,0.162408,-0.0367399,0.0548333,0.081051}. >>

Out[6]= {0.863531, {v -> 0.754547, [Alpha] -> -0.523666, [Beta] -> -0.734744, Subscript[p, A] -> 0.0000800015, Subscript[p, B] -> 0.906934}}

In[7]:= Maximize[{Subscript[Z, B], Subscript[c, A] <= v <= Subscript[c, B] && 0 <= Subscript[p, A] <= 1 && 0 <= Subscript[p, B] <= 1}, {v, [Alpha], [Beta], Subscript[p, A],Subscript[p, B]}]

During evaluation of In[7]:=NMaximize::nrnum:The function value 1.613510^8-4.6536810^7 I is not a real number at {v,[Alpha],[Beta],Subscript[p, A],Subscript[p, B]} = {0.377249,18.8636,-19.7831,0.162586,0.150344}. >>

Out[7]= {2.99746*10^7, {v -> 0.454771, [Alpha] -> 16.1621, [Beta] -> -15.78, Subscript[p, A] -> 0.187606, Subscript[p, B] -> 0.2869}}

POSTED BY: Bill Simpson
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract