Hi,
I have a question about a strange behavior I found in mathematica. If I try to get the eigenvalues of the following complex 6*6 matrix :
a = 1;
b = 100;
c = 10^10;
N[Eigenvalues[({{0, 0, 0, a, -I*a, b}, {0, 0, 0, a, -I*a, b}, {0, 0,
0, a, -I*a, b}, {a, a, a, c, 0, 0}, {-I*a, -I*a, -I*a, 0, c,
0}, {b, b, b, 0, 0, c}})]]
gives me this result :
{1.*10^10, 1.*10^10, 1.*10^10, -3.*10^-6, 0., 0.}
but if I just add a dot to a variable, like a=1.;
the result is completely wrong :
{1.*10^10 + 2.95915*10^-53 I, 1.*10^10 - 4.03437*10^-38 I,
1.*10^10 - 3.68514*10^-14 I, -2.00004*10^-6 +
4.03437*10^-38 I, -1.*10^-6 + 1.73907*10^-53 I, -6.60625*10^-10 -
5.08267*10^-9 I}
This is a simple case, I found worse results for a more complicate 6*6 matrix, but is there at least a reason for the big discrepancy here ?
Thanks,
Jonathan