In the equations you try to solve, the muF1 contains a function Re
In[146]:= \[Mu]F1
Out[146]= 0.0119846 ((-3.03928 + 0. I) + (78.5811 + 0. I) d -
980.429 d^2 + 4199.85 d^3) Derivative[1][
Re][(-3.03928 + 0. I) d + (39.2905 + 0. I) d^2 - 326.81 d^3 +
1049.96 d^4]
Where you define F1, eliminate the Re as follows (it is not needed)
F1 = Integrate[
f, {x, 0, 2 \[Pi]/qbest}, {y, 0, 2 \[Pi] Sqrt[3]/qbest}]/area;
The muF1 will no longer contain Re' and will now be as follows:
0.0119846 ((-3.03928 + 0. I) + (78.5811 + 0. I) d - 980.429 d^2 +
4199.85 d^3)
If you now solve your equation it works fine:
In[154]:= FindRoot[{\[Mu]F1 == \[Mu]fliq,
PF1 == Pliq}, {{d, 0.167}, {n01, 0.001}}]
Out[154]= {d -> 0.183252 + 0. I, n01 -> 0.168551 + 0. I}
I attached the corrected nb
Attachments: