# The polar equation of the circle of R=1

Posted 8 years ago
4110 Views
|
3 Replies
|
0 Total Likes
|
 In[1]:= r^2 - 6 r Cos[\[Theta]] - 4 r Sin[\[Theta]] == -12 Out[1]= r^2 - 6 r Cos[\[Theta]] - 4 r Sin[\[Theta]] == -12 In[2]:= Solve[r^2 - 6 r Cos[\[Theta]] - 4 r Sin[\[Theta]] == -12, r] Out[2]= {{r -> 1/2 (6 Cos[\[Theta]] + 4 Sin[\[Theta]] - Sqrt[2] Sqrt[-11 + 5 Cos[2 \[Theta]] + 12 Sin[2 \[Theta]]])}, {r -> 1/2 (6 Cos[\[Theta]] + 4 Sin[\[Theta]] + Sqrt[2] Sqrt[-11 + 5 Cos[2 \[Theta]] + 12 Sin[2 \[Theta]]])}} In[5]:= PolarPlot[ 1/2 (6 Cos[\[Theta]] + 4 Sin[\[Theta]] - Sqrt[2] Sqrt[-11 + 5 Cos[2 \[Theta]] + 12 Sin[2 \[Theta]]]), {\[Theta], 0, 2 Pi}] 
3 Replies
Sort By:
Posted 8 years ago
 I see that you are posting a lot of screen shots. I'm sorry. I'm not able to tell what the issue is from them. Can you please be explciit about what the issue is?
Posted 8 years ago
 PolarPlot[ 1/2 (6 Cos[\[Theta]] + 4 Sin[\[Theta]] - Sqrt[2] Sqrt[-11 + 5 Cos[2 \[Theta]] + 12 Sin[2 \[Theta]]]), {\[Theta], 0, 2 Pi}] 
Posted 8 years ago
 I'm sorry. I'm not sure I understand the question. Is there something wrong with the results?