Message Boards Message Boards

0
|
4443 Views
|
3 Replies
|
0 Total Likes
View groups...
Share
Share this post:

The polar equation of the circle of R=1

Posted 9 years ago
In[1]:= r^2 - 6 r Cos[\[Theta]] - 4 r Sin[\[Theta]] == -12

Out[1]= r^2 - 6 r Cos[\[Theta]] - 4 r Sin[\[Theta]] == -12

In[2]:= Solve[r^2 - 6 r Cos[\[Theta]] - 4 r Sin[\[Theta]] == -12, r]

Out[2]= {{r -> 
   1/2 (6 Cos[\[Theta]] + 4 Sin[\[Theta]] - 
      Sqrt[2] Sqrt[-11 + 5 Cos[2 \[Theta]] + 
        12 Sin[2 \[Theta]]])}, {r -> 
   1/2 (6 Cos[\[Theta]] + 4 Sin[\[Theta]] + 
      Sqrt[2] Sqrt[-11 + 5 Cos[2 \[Theta]] + 12 Sin[2 \[Theta]]])}}

In[5]:= PolarPlot[
 1/2 (6 Cos[\[Theta]] + 4 Sin[\[Theta]] - 
    Sqrt[2] Sqrt[-11 + 5 Cos[2 \[Theta]] + 
      12 Sin[2 \[Theta]]]), {\[Theta], 0, 2 Pi}]

enter image description here

POSTED BY: Simon Cadrin
3 Replies

I see that you are posting a lot of screen shots.

I'm sorry. I'm not able to tell what the issue is from them. Can you please be explciit about what the issue is?

POSTED BY: Sean Clarke
PolarPlot[ 1/2 (6 Cos[\[Theta]] + 4 Sin[\[Theta]] -  Sqrt[2] Sqrt[-11 + 5 Cos[2 \[Theta]] + 12 Sin[2 \[Theta]]]), {\[Theta], 0, 2 Pi}]

enter image description here

POSTED BY: Simon Cadrin

I'm sorry. I'm not sure I understand the question. Is there something wrong with the results?

POSTED BY: Sean Clarke
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract