Are you trying to find the minimum value of t at which the inequalities are satisfied? I tried doing that with FindMinimum but it didn't converge well.
In[12]:= FindMinimum[{t,
Thread[((-(1/(3 Sqrt[13])))*
Exp[-5.302775637731995*t]*{-1.6513878188659972, -0.5, -0.5,
3.3027756377319943, -1.6513878188659972,
1.}) + ((1/20 (-5 + Sqrt[5]))*
Exp[-4.618033988749895*t]*{-1.,
1.618033988749895, -1.618033988749895, 0., 1.,
0.}) + ((2/((-5 + Sqrt[13]) (5 + Sqrt[13]))) Exp[-4*t]*{-1.,
1., 1., -1., -1., 1.}) + ((1/20 (-5 - Sqrt[5]))*
Exp[-2.381966011250105*t]*{-1., -0.6180339887498949,
0.6180339887498949, 0., 1., 0.}) + ((1/(3 Sqrt[13]))*
Exp[-1.6972243622680054*
t]*{0.1513878188659973, -0.5, -0.5, -0.3027756377319946,
0.1513878188659973,
1.}) + ((-(2/((-5 + Sqrt[13]) (5 + Sqrt[13]))))*{1., 1., 1.,
1., 1., 1.}) >= {0.1, 0.1, 0.1, 0.1, 0.1, 0.1}]}, t]
During evaluation of In[12]:= FindMinimum::eit: The algorithm does not converge to the tolerance of 4.806217383937354`*^-6 in 500 iterations. The best estimated solution, with feasibility residual, KKT residual, or complementary residual of {6.40971*10^7,1.,1.06856*10^7}, is returned. >>
Out[12]= {1.89833*10^18, {t -> 1.89833*10^18}}