The MRB constant is approximated by
m = NSum[(-1)^k (k^(1/k) - 1), {k, 1, Infinity}, WorkingPrecision -> 200,
Method -> "AlternatingSigns"]
.
This method is pitifully inefficient in its direct summation of MRB constant ie. -1^(1/1)+2^(1/2)-3^(1/3)+... . Here is how much error there is after 10,000 terms:
m - (NSum[(-1)^k (k^(1/k) - 1), {k, 1, 10^4},
WorkingPrecision -> 200, Method -> "AlternatingSigns"])
(* -0.
0004607086148833843903798558880939839952579916174598636084830590133354\
3604452568023408196838217734393902621089862492299952504355243485749500\
9513789757123430499002402147185148514618052628511533818725*)
.
Due to the work of Daniel Lichtblau, me, and the late Richard Crandall, found in the middle of my most successful post,
http://community.wolfram.com/groups/-/m/t/366628?ppauth=zGnyw9gs
, in the second reply that starts with the phrase "Daniel Lichtblau and others," without the quotes; I think I found the optimum direct summation method of the m= -1^(1/1)+f1 +2^(1/2)+f2 -3^(1/3)+f3+ f(k)(x)+ ...- sum[f[k]]. That is
f[k_]=Log[(k - Log[k])/k]
. Then subtract Sum[(-1)^k Log[(k - Log[k])/k]
. Here is an example showing the much smaller error in adding the first 10^4 terms:
f[k_] := Log[(k - Log[k])/
k]; m - (NSum[(-1)^k (k^(1/k) - 1 + f[k]), {k, 1, 10^4},
WorkingPrecision -> 200, Method -> "AlternatingSigns"] -
NSum[(-1)^k *f[k], {k, 1, Infinity}, WorkingPrecision -> 200,
Method -> "AlternatingSigns"])
(* 6.
5176019395153886286218356168146776861946664225985899368189404704176944\
5768612992269488431506197821023123569647840336109019435539071457039552\
26445450414770330729207675435060098684928265988*10^-11*)
Why don't see if you can find a better algorithm!