Group Abstract Group Abstract

Message Boards Message Boards

0
|
6K Views
|
2 Replies
|
1 Total Like
View groups...
Share
Share this post:

Definite integral

Posted 10 years ago

How to evaluate the following definite integral ???

Integrate[Exp[(Cos[\[Pi] x] - 1)/(2 \[Pi])] Cos[n*\[Pi]*x], {x, 0, 1}]
POSTED BY: Imran Khan
2 Replies

This is not a rigorous derivation by any means but it may give a starting point. We generate a list of these for small values of n, and work from there.

integrals = 
 Table[Integrate[
   Exp[(Cos[\[Pi] x] - 1)/(2 \[Pi])] Cos[j*\[Pi]*x], {x, 0, 1}], {j, 
   0, 10}]
(* Out[51]= {E^(-(1/2)/\[Pi]) BesselI[0, 1/(2 \[Pi])], 
 E^(-(1/2)/\[Pi]) BesselI[1, 1/(2 \[Pi])], 
 E^(-(1/2)/\[Pi]) BesselI[2, 1/(2 \[Pi])], 
 E^(-(1/2)/\[Pi]) BesselI[3, 1/(2 \[Pi])], 
 E^(-(1/2)/\[Pi]) (BesselI[0, 1/(2 \[Pi])] - 
    4 Hypergeometric0F1Regularized[2, 1/(16 \[Pi]^2)] + 
    6 Hypergeometric0F1Regularized[3, 1/(16 \[Pi]^2)]), 
 E^(-(1/2)/\[Pi]) (BesselI[1, 1/(2 \[Pi])] + 
    24 \[Pi] (-BesselI[2, 1/(2 \[Pi])] + 
       8 \[Pi] BesselI[3, 1/(2 \[Pi])])), 
 E^(-(1/2)/\[Pi]) ((1 + 576 \[Pi]^2 + 30720 \[Pi]^4) BesselI[0, 1/(
      2 \[Pi])] - 
    3 (3 + 512 (\[Pi]^2 + 20 \[Pi]^4)) Hypergeometric0F1Regularized[2,
       1/(16 \[Pi]^2)]), 
 E^(-(1/2)/\[Pi]) ((1 + 960 (\[Pi]^2 + 96 \[Pi]^4)) BesselI[1, 1/(
      2 \[Pi])] - 
    48 \[Pi] (1 + 320 (\[Pi]^2 + 48 \[Pi]^4)) BesselI[2, 1/(
      2 \[Pi])]), 
 E^(-(1/2)/\[Pi]) ((1 + 
       1920 (\[Pi]^2 + 240 \[Pi]^4 + 10752 \[Pi]^6)) BesselI[0, 1/(
      2 \[Pi])] - 
    64 \[Pi] (1 + 
       120 \[Pi]^2 (5 + 192 \[Pi]^2 (3 + 56 \[Pi]^2))) BesselI[1, 1/(
      2 \[Pi])]), 
 E^(-(1/2)/\[Pi]) ((1 + 
       960 \[Pi]^2 (3 + 224 \[Pi]^2 (5 + 384 \[Pi]^2))) BesselI[1, 1/(
      2 \[Pi])] - 
    80 \[Pi] (1 + 
       192 \[Pi]^2 (5 + 336 \[Pi]^2 (3 + 128 \[Pi]^2))) BesselI[2, 1/(
      2 \[Pi])]), 
 E^(-(1/2)/\[Pi]) ((1 + 4800 \[Pi]^2 + 3225600 \[Pi]^4 + 
       578027520 \[Pi]Out[51]= {E^(-(1/2)/\[Pi]) BesselI[0, 1/(2 \[Pi])], 
        E^(-(1/2)/\[Pi]) BesselI[1, 1/(2 \[Pi])], 
        E^(-(1/2)/\[Pi]) BesselI[2, 1/(2 \[Pi])], 
        E^(-(1/2)/\[Pi]) BesselI[3, 1/(2 \[Pi])], 
        E^(-(1/2)/\[Pi]) (BesselI[0, 1/(2 \[Pi])] - 
           4 Hypergeometric0F1Regularized[2, 1/(16 \[Pi]^2)] + 
           6 Hypergeometric0F1Regularized[3, 1/(16 \[Pi]^2)]), 
        E^(-(1/2)/\[Pi]) (BesselI[1, 1/(2 \[Pi])] + 
           24 \[Pi] (-BesselI[2, 1/(2 \[Pi])] + 
              8 \[Pi] BesselI[3, 1/(2 \[Pi])])), 
        E^(-(1/2)/\[Pi]) ((1 + 576 \[Pi]^2 + 30720 \[Pi]^4) BesselI[0, 1/(
             2 \[Pi])] - 
           3 (3 + 512 (\[Pi]^2 + 20 \[Pi]^4)) Hypergeometric0F1Regularized[2,
              1/(16 \[Pi]^2)]), 
        E^(-(1/2)/\[Pi]) ((1 + 960 (\[Pi]^2 + 96 \[Pi]^4)) BesselI[1, 1/(
             2 \[Pi])] - 
           48 \[Pi] (1 + 320 (\[Pi]^2 + 48 \[Pi]^4)) BesselI[2, 1/(
             2 \[Pi])]), 
        E^(-(1/2)/\[Pi]) ((1 + 
              1920 (\[Pi]^2 + 240 \[Pi]^4 + 10752 \[Pi]^6)) BesselI[0, 1/(
             2 \[Pi])] - 
           64 \[Pi] (1 + 
              120 \[Pi]^2 (5 + 192 \[Pi]^2 (3 + 56 \[Pi]^2))) BesselI[1, 1/(
             2 \[Pi])]), 
        E^(-(1/2)/\[Pi]) ((1 + 
              960 \[Pi]^2 (3 + 224 \[Pi]^2 (5 + 384 \[Pi]^2))) BesselI[1, 1/(
             2 \[Pi])] - 
           80 \[Pi] (1 + 
              192 \[Pi]^2 (5 + 336 \[Pi]^2 (3 + 128 \[Pi]^2))) BesselI[2, 1/(
             2 \[Pi])]), 
        E^(-(1/2)/\[Pi]) ((1 + 4800 \[Pi]^2 + 3225600 \[Pi]^4 + 
              578027520 \[Pi]^6 + 23781703680 \[Pi]^8) BesselI[0, 1/(
             2 \[Pi])] - 
           20 \[Pi] (5 + 7680 \[Pi]^2 + 2709504 \[Pi]^4 + 
              264241152 \[Pi]^6 + 4756340736 \[Pi]^8) BesselI[1, 1/(
             2 \[Pi])])}

From the above one might guess the general form is E^(-(1/2)/\[Pi]) BesselI[j, 1/(2 \[Pi])]. We can test this numerically on the eleven we generated.

   In[52]:= diffs = 
     integrals - 
      Table[E^(-(1/2)/\[Pi]) BesselI[j, 1/(2 \[Pi])], {j, 0, 10}];

   In[53]:= N[diffs, 50] // N

   During evaluation of In[53]:= N::meprec: Internal precision limit $MaxExtraPrecision = 50.` reached while evaluating {0,0,<<8>>,E^(-(1/2)/\[Pi]) ((1+4800 Power[<<2>>]+3225600 Power[<<2>>]+578027520 Power[<<2>>]+23781703680 Power[<<2>>]) BesselI[0,1/2 Power[<<2>>]]-20 \[Pi] (5+7680 Power[<<2>>]+2709504 Power[<<2>>]+264241152 Power[<<2>>]+4756340736 Power[<<2>>]) BesselI[1,1/2 Power[<<2>>]])-E^(-(1/2)/\[Pi]) BesselI[10,1/(2 \[Pi])]}. >>

   Out[53]= {0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.}^6 + 23781703680 \[Pi]^8) BesselI[0, 1/(
  2 \[Pi])] - 
20 \[Pi] (5 + 7680 \[Pi]^2 + 2709504 \[Pi]^4 + 
   264241152 \[Pi]^6 + 4756340736 \[Pi]^8) BesselI[1, 1/(
  2 \[Pi])])} *)

In[52]:= diffs = 
  integrals - 
   Table[E^(-(1/2)/\[Pi]) BesselI[j, 1/(2 \[Pi])], {j, 0, 10}];

In[53]:= N[diffs, 50] // N

(* During evaluation of In[53]:= N::meprec: Internal precision limit $MaxExtraPrecision = 50.` reached while evaluating {0,0,<<8>>,E^(-(1/2)/\[Pi]) ((1+4800 Power[<<2>>]+3225600 Power[<<2>>]+578027520 Power[<<2>>]+23781703680 Power[<<2>>]) BesselI[0,1/2 Power[<<2>>]]-20 \[Pi] (5+7680 Power[<<2>>]+2709504 Power[<<2>>]+264241152 Power[<<2>>]+4756340736 Power[<<2>>]) BesselI[1,1/2 Power[<<2>>]])-E^(-(1/2)/\[Pi]) BesselI[10,1/(2 \[Pi])]}. >> *)

(* Out[53]= {0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.} *)
POSTED BY: Daniel Lichtblau

You can't. There is not even an antiderivative to $e^{\cos x}$ never mind the much more complicated one you have! One way these things could be approximated is using series expansion. I'd try numerical integration after plugging some value for n. btw, The integral goes to zero quickly as n gets large.

POSTED BY: Nasser M. Abbasi
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard