This is not a rigorous derivation by any means but it may give a starting point. We generate a list of these for small values of n
, and work from there.
integrals =
Table[Integrate[
Exp[(Cos[\[Pi] x] - 1)/(2 \[Pi])] Cos[j*\[Pi]*x], {x, 0, 1}], {j,
0, 10}]
(* Out[51]= {E^(-(1/2)/\[Pi]) BesselI[0, 1/(2 \[Pi])],
E^(-(1/2)/\[Pi]) BesselI[1, 1/(2 \[Pi])],
E^(-(1/2)/\[Pi]) BesselI[2, 1/(2 \[Pi])],
E^(-(1/2)/\[Pi]) BesselI[3, 1/(2 \[Pi])],
E^(-(1/2)/\[Pi]) (BesselI[0, 1/(2 \[Pi])] -
4 Hypergeometric0F1Regularized[2, 1/(16 \[Pi]^2)] +
6 Hypergeometric0F1Regularized[3, 1/(16 \[Pi]^2)]),
E^(-(1/2)/\[Pi]) (BesselI[1, 1/(2 \[Pi])] +
24 \[Pi] (-BesselI[2, 1/(2 \[Pi])] +
8 \[Pi] BesselI[3, 1/(2 \[Pi])])),
E^(-(1/2)/\[Pi]) ((1 + 576 \[Pi]^2 + 30720 \[Pi]^4) BesselI[0, 1/(
2 \[Pi])] -
3 (3 + 512 (\[Pi]^2 + 20 \[Pi]^4)) Hypergeometric0F1Regularized[2,
1/(16 \[Pi]^2)]),
E^(-(1/2)/\[Pi]) ((1 + 960 (\[Pi]^2 + 96 \[Pi]^4)) BesselI[1, 1/(
2 \[Pi])] -
48 \[Pi] (1 + 320 (\[Pi]^2 + 48 \[Pi]^4)) BesselI[2, 1/(
2 \[Pi])]),
E^(-(1/2)/\[Pi]) ((1 +
1920 (\[Pi]^2 + 240 \[Pi]^4 + 10752 \[Pi]^6)) BesselI[0, 1/(
2 \[Pi])] -
64 \[Pi] (1 +
120 \[Pi]^2 (5 + 192 \[Pi]^2 (3 + 56 \[Pi]^2))) BesselI[1, 1/(
2 \[Pi])]),
E^(-(1/2)/\[Pi]) ((1 +
960 \[Pi]^2 (3 + 224 \[Pi]^2 (5 + 384 \[Pi]^2))) BesselI[1, 1/(
2 \[Pi])] -
80 \[Pi] (1 +
192 \[Pi]^2 (5 + 336 \[Pi]^2 (3 + 128 \[Pi]^2))) BesselI[2, 1/(
2 \[Pi])]),
E^(-(1/2)/\[Pi]) ((1 + 4800 \[Pi]^2 + 3225600 \[Pi]^4 +
578027520 \[Pi]Out[51]= {E^(-(1/2)/\[Pi]) BesselI[0, 1/(2 \[Pi])],
E^(-(1/2)/\[Pi]) BesselI[1, 1/(2 \[Pi])],
E^(-(1/2)/\[Pi]) BesselI[2, 1/(2 \[Pi])],
E^(-(1/2)/\[Pi]) BesselI[3, 1/(2 \[Pi])],
E^(-(1/2)/\[Pi]) (BesselI[0, 1/(2 \[Pi])] -
4 Hypergeometric0F1Regularized[2, 1/(16 \[Pi]^2)] +
6 Hypergeometric0F1Regularized[3, 1/(16 \[Pi]^2)]),
E^(-(1/2)/\[Pi]) (BesselI[1, 1/(2 \[Pi])] +
24 \[Pi] (-BesselI[2, 1/(2 \[Pi])] +
8 \[Pi] BesselI[3, 1/(2 \[Pi])])),
E^(-(1/2)/\[Pi]) ((1 + 576 \[Pi]^2 + 30720 \[Pi]^4) BesselI[0, 1/(
2 \[Pi])] -
3 (3 + 512 (\[Pi]^2 + 20 \[Pi]^4)) Hypergeometric0F1Regularized[2,
1/(16 \[Pi]^2)]),
E^(-(1/2)/\[Pi]) ((1 + 960 (\[Pi]^2 + 96 \[Pi]^4)) BesselI[1, 1/(
2 \[Pi])] -
48 \[Pi] (1 + 320 (\[Pi]^2 + 48 \[Pi]^4)) BesselI[2, 1/(
2 \[Pi])]),
E^(-(1/2)/\[Pi]) ((1 +
1920 (\[Pi]^2 + 240 \[Pi]^4 + 10752 \[Pi]^6)) BesselI[0, 1/(
2 \[Pi])] -
64 \[Pi] (1 +
120 \[Pi]^2 (5 + 192 \[Pi]^2 (3 + 56 \[Pi]^2))) BesselI[1, 1/(
2 \[Pi])]),
E^(-(1/2)/\[Pi]) ((1 +
960 \[Pi]^2 (3 + 224 \[Pi]^2 (5 + 384 \[Pi]^2))) BesselI[1, 1/(
2 \[Pi])] -
80 \[Pi] (1 +
192 \[Pi]^2 (5 + 336 \[Pi]^2 (3 + 128 \[Pi]^2))) BesselI[2, 1/(
2 \[Pi])]),
E^(-(1/2)/\[Pi]) ((1 + 4800 \[Pi]^2 + 3225600 \[Pi]^4 +
578027520 \[Pi]^6 + 23781703680 \[Pi]^8) BesselI[0, 1/(
2 \[Pi])] -
20 \[Pi] (5 + 7680 \[Pi]^2 + 2709504 \[Pi]^4 +
264241152 \[Pi]^6 + 4756340736 \[Pi]^8) BesselI[1, 1/(
2 \[Pi])])}
From the above one might guess the general form is E^(-(1/2)/\[Pi]) BesselI[j, 1/(2 \[Pi])]
. We can test this numerically on the eleven we generated.
In[52]:= diffs =
integrals -
Table[E^(-(1/2)/\[Pi]) BesselI[j, 1/(2 \[Pi])], {j, 0, 10}];
In[53]:= N[diffs, 50] // N
During evaluation of In[53]:= N::meprec: Internal precision limit $MaxExtraPrecision = 50.` reached while evaluating {0,0,<<8>>,E^(-(1/2)/\[Pi]) ((1+4800 Power[<<2>>]+3225600 Power[<<2>>]+578027520 Power[<<2>>]+23781703680 Power[<<2>>]) BesselI[0,1/2 Power[<<2>>]]-20 \[Pi] (5+7680 Power[<<2>>]+2709504 Power[<<2>>]+264241152 Power[<<2>>]+4756340736 Power[<<2>>]) BesselI[1,1/2 Power[<<2>>]])-E^(-(1/2)/\[Pi]) BesselI[10,1/(2 \[Pi])]}. >>
Out[53]= {0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.}^6 + 23781703680 \[Pi]^8) BesselI[0, 1/(
2 \[Pi])] -
20 \[Pi] (5 + 7680 \[Pi]^2 + 2709504 \[Pi]^4 +
264241152 \[Pi]^6 + 4756340736 \[Pi]^8) BesselI[1, 1/(
2 \[Pi])])} *)
In[52]:= diffs =
integrals -
Table[E^(-(1/2)/\[Pi]) BesselI[j, 1/(2 \[Pi])], {j, 0, 10}];
In[53]:= N[diffs, 50] // N
(* During evaluation of In[53]:= N::meprec: Internal precision limit $MaxExtraPrecision = 50.` reached while evaluating {0,0,<<8>>,E^(-(1/2)/\[Pi]) ((1+4800 Power[<<2>>]+3225600 Power[<<2>>]+578027520 Power[<<2>>]+23781703680 Power[<<2>>]) BesselI[0,1/2 Power[<<2>>]]-20 \[Pi] (5+7680 Power[<<2>>]+2709504 Power[<<2>>]+264241152 Power[<<2>>]+4756340736 Power[<<2>>]) BesselI[1,1/2 Power[<<2>>]])-E^(-(1/2)/\[Pi]) BesselI[10,1/(2 \[Pi])]}. >> *)
(* Out[53]= {0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.} *)