The Trick is a substitution, f[x, y] -> g[x, y]/(x - y), in order to eliminate the (x - y) term from the ODE.
("Of course this is not my trick")
(Unevaluated[(x - y)*D[f[x, y], x, y] - D[f[x, y], x] + D[f[x, y], y]] /. f[x, y] -> g[x, y]/(x - y)) // Simplify
(* Derivative[1, 1][g][x, y] *)
DSolve[Derivative[1, 1][g][x, y] == 0, g[x, y], {x, y}]
(* {{g[x, y] -> C[1][x] + C[2][y]}} *)
Then:
$$f(x,y)=\frac{c_1(x)+c_2(y)}{x-y}$$
Yes Maple is powerfull software.