I am trying to get more significant digists (up to 8 or 10) for the following expression and for the value of $b$ where it is minimum,
NMinimize[{(-((4 $\alpha$b$^3$)/(2 b+$\mu$)^$2$)+(64 b$^5$ (6 b + 4 b$^3$ - 16 b$^5$+ (3 Sqrt[1/$b^2$] b $\pi$)/Sqrt[1-b$^2$]-(6 ArcSin[b])/Sqrt[1-$b^2$]))/((96 b$^5$-96 $b^7$) $\pi$))/(1+b$^2$), 0<=b<=0.99999999999},{b}, AccuracyGoal->20] /. { $\alpha$-> 0.05 , $\mu$-> 0.01}
The result is {1.99975, {b -> 0.0227689}}
How can I get some more significant digits?