I would disagree with that assessment.
\[CapitalPsi][x_, t_] := Sqrt[\[Rho][x, t]]*Exp[(I/\[HBar])*S[x, t]];
Eq = I*\[HBar]*D[\[CapitalPsi][x, t], t] + (\[HBar]^2/(2*m))*
D[\[CapitalPsi][x, t], x, x] - U[x, t]*\[CapitalPsi][x, t]
(* Out[1]= (-E^((I*S[x, t])/\[HBar]))*U[x, t]*Sqrt[\[Rho][x, t]] +
I*\[HBar]*((I*E^((I*S[x, t])/\[HBar])*Sqrt[\[Rho][x, t]]*
Derivative[0, 1][S][x, t])/\[HBar] +
(E^((I*S[x, t])/\[HBar])*Derivative[0, 1][\[Rho]][x, t])/
(2*Sqrt[\[Rho][x, t]])) + (1/(2*m))*
(\[HBar]^2*(-((E^((I*S[x, t])/\[HBar])*Sqrt[\[Rho][x, t]]*
Derivative[1, 0][S][x, t]^2)/\[HBar]^2) +
(I*E^((I*S[x, t])/\[HBar])*Derivative[1, 0][S][x, t]*
Derivative[1, 0][\[Rho]][x, t])/(\[HBar]*
Sqrt[\[Rho][x, t]]) -
(E^((I*S[x, t])/\[HBar])*Derivative[1, 0][\[Rho]][x, t]^2)/
(4*\[Rho][x, t]^(3/2)) + (I*E^((I*S[x, t])/\[HBar])*
Sqrt[\[Rho][x, t]]*
Derivative[2, 0][S][x, t])/\[HBar] +
(E^((I*S[x, t])/\[HBar])*Derivative[2, 0][\[Rho]][x, t])/
(2*Sqrt[\[Rho][x, t]]))) *)
Now expand, convert to trigs, and have a look at what appears without complex multipliers.
ExpToTrig[Expand[Eq]]
(* Out[9]= (-Cos[S[x, t]/\[HBar]])*U[x, t]*Sqrt[\[Rho][x, t]] -
I*Sin[S[x, t]/\[HBar]]*U[x, t]*Sqrt[\[Rho][x, t]] -
Cos[S[x, t]/\[HBar]]*Sqrt[\[Rho][x, t]]*Derivative[0, 1][S][x,
t] - I*Sin[S[x, t]/\[HBar]]*Sqrt[\[Rho][x, t]]*
Derivative[0, 1][S][x, t] +
(I*\[HBar]*Cos[S[x, t]/\[HBar]]*Derivative[0, 1][\[Rho]][x, t])/
(2*Sqrt[\[Rho][x, t]]) - (\[HBar]*Sin[S[x, t]/\[HBar]]*
Derivative[0, 1][\[Rho]][x, t])/(2*Sqrt[\[Rho][x, t]]) -
(Cos[S[x, t]/\[HBar]]*Sqrt[\[Rho][x, t]]*Derivative[1, 0][S][x, t]^
2)/(2*m) - (I*Sin[S[x, t]/\[HBar]]*Sqrt[\[Rho][x, t]]*
Derivative[1, 0][S][x, t]^2)/(2*m) +
(I*\[HBar]*Cos[S[x, t]/\[HBar]]*Derivative[1, 0][S][x, t]*
Derivative[1, 0][\[Rho]][x, t])/(2*m*Sqrt[\[Rho][x, t]]) -
(\[HBar]*Sin[S[x, t]/\[HBar]]*Derivative[1, 0][S][x, t]*
Derivative[1, 0][\[Rho]][x, t])/(2*m*Sqrt[\[Rho][x, t]]) -
(\[HBar]^2*Cos[S[x, t]/\[HBar]]*Derivative[1, 0][\[Rho]][x, t]^2)/
(8*m*\[Rho][x, t]^(3/2)) - (I*\[HBar]^2*Sin[S[x, t]/\[HBar]]*
Derivative[1, 0][\[Rho]][x, t]^2)/(8*m*\[Rho][x, t]^(3/2)) +
(I*\[HBar]*Cos[S[x, t]/\[HBar]]*Sqrt[\[Rho][x, t]]*
Derivative[2, 0][S][x, t])/(2*m) -
(\[HBar]*Sin[S[x, t]/\[HBar]]*Sqrt[\[Rho][x, t]]*
Derivative[2, 0][S][
x, t])/(2*m) + (\[HBar]^2*Cos[S[x, t]/\[HBar]]*
Derivative[2, 0][\[Rho]][x, t])/(4*m*Sqrt[\[Rho][x, t]]) +
(I*\[HBar]^2*Sin[S[x, t]/\[HBar]]*Derivative[2, 0][\[Rho]][x, t])/
(4*m*Sqrt[\[Rho][x, t]]) *)