Group Abstract Group Abstract

Message Boards Message Boards

0
|
5.6K Views
|
2 Replies
|
0 Total Likes
View groups...
Share
Share this post:

An operation that sums irrational numbers to get a rational one. Maybe!

I know of two separate sequences which give approximations to the MRB constant:as partial sums

Let 5^3+50 be just a sample large number

f[x_, n_] := (Log[x]/x)^n/n!; g[x_] := (x^(1/x) - 1)

then

 (NSum[(-1)^x (f[x, n]), {x, 1, Infinity}, {n, 1, 5^3 + 50}, 
   Method -> "AlternatingSigns", WorkingPrecision -> 90, 
   NSumTerms -> 100])

and

 (NSum[(-1)^x g[x], {x, 1, Infinity}, Method -> "AlternatingSigns",
    WorkingPrecision -> 90, NSumTerms -> 100])

both give 100 digits of the constant.

According to what I have found out it is unknown whether the constant is irrational.

However, here is an operation with a twist that gives a seemingly rational result from the two series: In the following, my first suspicion is that a great number of the terms of the two series cancel each other out

Let

 a = (NSum[(-1)^x (f[x, n] + g[x]), {x, 1, Infinity}, {n, 1, 
    5^3 + 50}, Method -> "AlternatingSigns", WorkingPrecision -> 90, 
   NSumTerms -> 100])

(*
18.9738238886687791451003113394815962356462125849140174033724730930372\
0038803068158297872*)

and

 b = (NSum[(-1)^x (f[x, n] - g[x]), {x, 1, Infinity}, {n, 1, 
    5^3 + 50}, Method -> "AlternatingSigns", WorkingPrecision -> 90, 
   NSumTerms -> 100])

(*
-18.598104603744644904603275471373049775534406395113739831028463724858\
24592490136115559301*)

Then

   a/b + 101/99

gives 0. to a great deal of accuracy.

Using another large number we have the dialog that follows:

  a = (NSum[(-1)^x (f[x, n] + g[x]), {x, 1, Infinity}, {n, 1, 
    10^3}, Method -> "AlternatingSigns", WorkingPrecision -> 90, 
   NSumTerms -> 100])

 (*
18.9738238886687791451003113394815962356462125849140174033724730930372\
0038803068158297872*)

   b = (NSum[(-1)^x (f[x, n] - g[x]), {x, 1, Infinity}, {n, 1, 
    10^3}, Method -> "AlternatingSigns", WorkingPrecision -> 90, 
   NSumTerms -> 100])

 (*
-18.598104603744644904603275471373049775534406395113739831028463724858\
24592490136115559301*)

  a/b

 (*\
-1.0202020202020202020202020202020202020202020202020202020202020202020\
20202020202020202020*)

  a/b + 101/99

  (* 0.*10^-88*)

And changing of the upper limit of x to match the upper limit of n gives the following dialog:

   a = (NSum[(-1)^x (f[x, n] + g[x]), {x, 1, 5^3 + 50}, {n, 1, 
    5^3 + 50}, Method -> "AlternatingSigns", WorkingPrecision -> 90, 
   NSumTerms -> 100])

 (*
17.4647396051636702353546828200037984460733942552094333462726566948090\
9435574173425497138*)

  b = (NSum[(-1)^x (f[x, n] - g[x]), {x, 1, 5^3 + 50}, {n, 1, 
    5^3 + 50}, Method -> "AlternatingSigns", WorkingPrecision -> 90, 
   NSumTerms -> 100])

(*
-17.118903177338647062377362368122535110507584467977563379019732799862\
37961602407615091254*)

      a/b + 101/99

      (*0.*10^-88*)

However, the result is probably only close to being rational!!!!!!

Because with a sample smaller number for the upper bound of the summation, u. a/b Is directly related to u.

   a = (NSum[(-1)^x (f[x, n] + g[x]), {x, 1, Infinity}, {n, 1, 
    50}, Method -> "AlternatingSigns", WorkingPrecision -> 90, 
   NSumTerms -> 100])

(*
9.58084176556542313267441463676793473285105783990707809477223888856333\
8809797670898335791*)

   b = (NSum[(-1)^x (f[x, n] - g[x]), {x, 1, Infinity}, {n, 1, 
    50}, Method -> "AlternatingSigns", WorkingPrecision -> 90, 
   NSumTerms -> 100])

 (*
-9.2051224806412888921773787686593882727392516501068005224282295203843\
84346668350470950074*)

   a/b + 51/49

 (* 0.*10^-89*)

And again changing of the upper limit of x to match the upper limit of n gives the following dialog:

  a = (NSum[(-1)^x (f[x, n] + g[x]), {x, 1, 50}, {n, 1, 50}, 
   Method -> "AlternatingSigns", WorkingPrecision -> 90, 
   NSumTerms -> 100])

 (*
11.6400420049405567712416347589817738386513218016649258684668924395814\
104491180570624594618*)

   b = (NSum[(-1)^x (f[x, n] - g[x]), {x, 1, 50}, {n, 1, 50}, 
   Method -> "AlternatingSigns", WorkingPrecision -> 90, 
   NSumTerms -> 100])

 (*
-11.183569769452691799820394180198174864586564083952575834409367245872\
3355295447999227551691*)

   a/b + 51/49

 (* -0.*10^-90*)

So we had an upper limit of 50 and a/b + (50+1)/(50-1)==0.

That pattern holds for many small upper limits:

 Table[
 a = (NSum[(-1)^x (f[x, n] + g[x]), {x, 1, Infinity}, {n, 1, u}, 
    Method -> "AlternatingSigns", WorkingPrecision -> 400, 
    NSumTerms -> 100]);
 b = (NSum[(-1)^x (f[x, n] - g[x]), {x, 1, Infinity}, {n, 1, u}, 
    Method -> "AlternatingSigns", WorkingPrecision -> 400, 
    NSumTerms -> 100]);
 Print[N[a/b + (u + 1)/(u - 1), 30]], {u, 10, 100, 10}]

(* -4.26437037879890888209403349528*10^-14

 -3.45296975923093128282587700610*10^-30

 -9.13683371485136018997871584145*10^-49

 -8.71088418964640386964920759895*10^-69

 -7.12931012161710951343301078693*10^-90

 -8.25602003178565088281349655952*10^-112

 -1.87851117361012541401103121417*10^-134

 -1.05980261544468753040510454976*10^-157

 -1.76367310964213439705827747685*10^-181

 -9.90529404507625197397486146716*10^-206*)

But the 0 is not found by the same pattern for larger upper limits:

Table[a = (NSum[(-1)^x (f[x, n] + g[x]), {x, 1, Infinity}, {n, 1, u}, 
    Method -> "AlternatingSigns", WorkingPrecision -> 90, 
    NSumTerms -> 100]); 
 b = (NSum[(-1)^x (f[x, n] - g[x]), {x, 1, Infinity}, {n, 1, u}, 
    Method -> "AlternatingSigns", WorkingPrecision -> 90, 
    NSumTerms -> 100]);
 Print[a/b + (u + 1)/(u - 1)], {u, 10^3, 10^4, 10^3}]

(*   -0.018200018200018200018200018200018200018200018200018200018200018200018200018200018200018

-0.019201519951895139488936387385611997918150994689263823831107472928383383610997417900870

-0.019535131239032539466017291959272619492692850478779121660081980188682422760448769118326

-0.019701895170762387566588616851182492592845180992217751407548856911197496343782915425826
  $Aborted*)

I will try to find out why this all happens. You can help me if you wish! (Even if you do I will no doubt make my own contribution too.) When I make these post I always hope that someone will build upon them and perhaps do better research! Like RICHARD J. MATHAR did with my integral analog of the MRB constant at http://arxiv.org/pdf/0912.3844v3.pdf .

My first suspicion was that a great number of the terms of the two series cancel each other out., bu why then does the operation behave so differently with smaller numbers?

2 Replies

Let m be the MRB constant and f and g as shown above.

 g[x_] := (x^(1/x) - 1); 
 f[x_, n_] := (Log[x]/x)^n/
   n!; m = (NSum[(-1)^x g[x], {x, 1, Infinity}, 
    Method -> "AlternatingSigns", WorkingPrecision -> 300, 
    NSumTerms -> 1000]);

Besides a/b+(u+1)/(u-1) going quickly to 0,as u gets large. It makes more sense that (a-b)/(2u) =( (fu+gu)-(fu-gu))/(2u)==(2gu)/(2u)==g which when summed =m, Here we see how they start off:

Table[(a = 
   NSum[(-1)^x (f[x, n] + g[x]), {x, 1, Infinity}, {n, 1, u}, 
    Method -> "AlternatingSigns", WorkingPrecision -> 400, 
    NSumTerms -> 100]); 
 b = (NSum[(-1)^x (f[x, n] - g[x]), {x, 1, Infinity}, {n, 1, u}, 
    Method -> "AlternatingSigns", WorkingPrecision -> 400, 
    NSumTerms -> 100]); 
 Print[m - (a - b)/(2 u), N[a/b + (u + 1)/(u - 1), 30]], {u, 2, 20}]

(*2.9850*10^-295     0.0588044076747937067994021066547

2.9850*10^-295      0.00165475082899660297675193835286

2.9850*10^-295     0.0000562290785871773061494180345698

2.9850*10^-295     1.78640445942680828529965585643*10^-6

2.9850*10^-295     4.79933132488713549990766793556*10^-8

2.9850*10^-295     9.41804891539970250289128024382*10^-10

2.9850*10^-295     4.86378771282306026679845050240*10^-12

2.9850*10^-295      -6.70294494993030794056876596313*10^-13

2.9850*10^-295     -4.26437037879890888209403349528*10^-14

2.9850*10^-295     -1.76031465751116919808682623225*10^-15

2.9850*10^-295     -5.93402231972816231472893603150*10^-17

2.9850*10^-295     -1.74721742310524156271704747311*10^-18

2.9850*10^-295     -4.63257352911874220308747674719*10^-20

2.9850*10^-295      -1.12525846193831364542050499590*10^-21

2.9850*10^-295     -2.53208070225842931686684156841*10^-23

2.9850*10^-295     -5.32027419310325006970087858471*10^-25

2.9850*10^-295     -1.05008292155137527971404209107*10^-26

2.9850*10^-295      -1.95619014149041012962369782556*10^-28

2.9850*10^-295     -3.45296975923093128282587700610*10^-30*)

It also make sense that (a+b)/2 ==( (f+g)+(f-g))/2 == (2f)/2 ==f which when summed ==m

Table[(a = 
    NSum[(-1)^x (f[x, n] + g[x]), {x, 1, Infinity}, {n, 1, u}, 
     Method -> "AlternatingSigns", WorkingPrecision -> 200, 
     NSumTerms -> 100]);
  b = (NSum[(-1)^x (f[x, n] - g[x]), {x, 1, Infinity}, {n, 1, u}, 
     Method -> "AlternatingSigns", WorkingPrecision -> 200, 
     NSumTerms -> 100]);
  N[m - (a + b)/(2 ), 30], {u, 2, 20}] 


(*{0.00280295020690991487554302477903, \
0.000207354973003898926467754641480, \
0.0000118838220054139752268887360275, 
 5.36949668548612943348287695556*10^-7, 
 1.87833475995791223751662833641*10^-8, 
 4.54955477824640390711570422552*10^-10, 
 2.79823510102935621930983118607*10^-12, \
-4.47720121506293658470300505848*10^-13, \
-3.24446753348225839015066851556*10^-14, \
-1.50314582809447325672953174965*10^-15, \
-5.62026502803637919956481089946*10^-17, \
-1.81789831610609500342042195259*10^-18, \
-5.25272284140188192394380606230*10^-20, \
-1.38108559526936147509536568097*10^-21, \
-3.34459529586118379023805508756*10^-23, \
-7.52538208163041281859921333607*10^-25, \
-1.58362528986859622980049668400*10^-26, \
-3.13332880273946568804473531325*10^-28, \
-5.85427982122311097011870583617*10^-30}*)

BTW (a + b)/(b - a) + 1/u ->0 as u gets large.

   Table[(a = 
   NSum[(-1)^x (f[x, n] + g[x]), {x, 1, Infinity}, {n, 1, u}, 
    Method -> "AlternatingSigns", WorkingPrecision -> 200, 
    NSumTerms -> 100]);
 b = (NSum[(-1)^x (f[x, n] - g[x]), {x, 1, Infinity}, {n, 1, u}, 
    Method -> "AlternatingSigns", WorkingPrecision -> 200, 
    NSumTerms -> 100]);
 N[(a + b)/(b - a) + 1/u, 30], {u, 2, 20}]

 (* {0.00746022447976257186735255754231, \
0.000367925348035246279539761887242, \
0.0000158147618212005980219200928810, 
 5.71649835495704795347253008366*10^-7, 
 1.66643452113208065195052846166*10^-8, 
 3.45969143970653236318100210947*10^-10, 
 1.86191873381903974852245488356*10^-12, \
-2.64807701725562906674208748575*10^-13, \
-1.72707000341352495535034255614*10^-14, \
-7.27402751037672640323689756254*10^-16, \
-2.49311354405245701581204371757*10^-17, \
-7.44376653630635458072080266833*10^-19, \
-1.99720644495170263343098100991*10^-20, \
-4.90112574533132165560673696664*10^-22, \
-1.11273077735966132088873552897*10^-23, \
-2.35638441770662978865644390431*10^-25, \
-4.68324019025227555304565066070*10^-27, \
-8.77847099505391803321437805293*10^-29, \
-1.55815260385295774137517699900*10^-30}*)

I still haven't answered why (a + b)/(b - a) + 1/u ->0 and a/b + (u+1)/(u-1) -> 0, where u is the upper limit of the summations.

In the original post the upper limits of 5^3 and 5^3 + 50 gave the same results; Mathematica didn't see the difference in them. The reason for the change in the rule (a/b + (u + 1)/(u - 1)==0) for large upper limits is "u" (the NSumTerms setting).. NSumTerms -> 500 helps produce a/b + (u + 1)/(u - 1)==0 for larger u.

In[276]:= a = (NSum[(-1)^x (f[x, n] + g[x]), {x, 1, 5^3 + 50}, {n, 1, 
    5^3 + 50}, Method -> "AlternatingSigns", WorkingPrecision -> 90, 
   NSumTerms -> 1000])



b = (NSum[(-1)^x (f[x, n] - g[x]), {x, 1, 5^3 + 50}, {n, 1, 5^3 + 50},
    Method -> "AlternatingSigns", WorkingPrecision -> 90, 
   NSumTerms -> 1000])



a/b + (5^3 + 50 + 1)/(5^3 + 50 - 1)



Out[276]= \
30.4336056486020392220041997655511735297912612764045571182573027553108\
970951539131608684145

Out[277]= \
-30.087769220777016049026879313669910194225451489172687151004378860364\
1823554362550567676370

Out[278]= 0.*10^-90

OK now, all we have to do is find out why a/b + (u+1)/(u-1) == 0, where u is the upper limit of the summations.

Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard