Did you mean these ones?
In[10]:= Solve[{a1 x0^2 + b1 x0 + c1 == y0,
a1 x1 ^2 + b1 x1 + c1 == y1, a2 x1^2 + b2 x1 + c2 == y1,
a2 x2^2 + b2 x2 + c2 == y2, 2 a1 x0 + b1 == 0, 2 a2 x2 + b2 == 0,
2 a2 x1 + b2 == 2 a2 x1 + b2}, {a1, a2, b1, b2, c1, c2, x0, y0,
x1, y1, x2, y2}]
During evaluation of In[10]:= Solve::svars: Equations may not give solutions for all "solve" variables. >>
Out[10]= {{b1 -> -2 a1 x0, b2 -> -2 a2 x2,
c2 -> c1 - 2 a1 x0 x1 + a1 x1^2 - a2 x1^2 + 2 a2 x1 x2,
y0 -> c1 - a1 x0^2, y1 -> c1 - 2 a1 x0 x1 + a1 x1^2,
y2 -> c1 - 2 a1 x0 x1 + a1 x1^2 - a2 x1^2 + 2 a2 x1 x2 - a2 x2^2}}
In[11]:= Reduce[{a1 x0^2 + b1 x0 + c1 == y0,
a1 x1 ^2 + b1 x1 + c1 == y1, a2 x1^2 + b2 x1 + c2 == y1,
a2 x2^2 + b2 x2 + c2 == y2, 2 a1 x0 + b1 == 0, 2 a2 x2 + b2 == 0,
2 a2 x1 + b2 == 2 a2 x1 + b2}, {a1, a2, b1, b2, c1, c2, x0, y0,
x1, y1, x2, y2}]
Out[11]= (a1 == 0 && a2 == 0 && b1 == 0 && b2 == 0 && c2 == c1 &&
y0 == c1 && y1 == c1 && y2 == c1) || (a1 == 0 && b1 == 0 &&
y0 == c1 &&
a2 != 0 && (x1 == (-b2 + Sqrt[b2^2 + 4 a2 c1 - 4 a2 c2])/(2 a2) ||
x1 == -((b2 + Sqrt[b2^2 + 4 a2 c1 - 4 a2 c2])/(2 a2))) &&
y1 == c1 && x2 == -(b2/(2 a2)) &&
y2 == 1/2 (2 c2 + b2 x2)) || (a2 == 0 && b2 == 0 && a1 != 0 &&
x0 == -(b1/(2 a1)) &&
y0 == 1/2 (2 c1 + b1 x0) && (x1 == (-b1 - Sqrt[
b1^2 - 4 a1 c1 + 4 a1 c2])/(2 a1) ||
x1 == (-b1 + Sqrt[b1^2 - 4 a1 c1 + 4 a1 c2])/(2 a1)) &&
y1 == c2 && y2 == c2) || (a2 == a1 && b2 == b1 && c2 == c1 &&
a1 != 0 && x0 == -(b1/(2 a1)) && y0 == 1/2 (2 c1 + b1 x0) &&
y1 == c1 + b1 x1 + a1 x1^2 && x2 == x0 &&
y2 == 1/2 (2 c1 + b1 x0)) || (a2 == a1 && a1 != 0 &&
x0 == -(b1/(2 a1)) && y0 == 1/2 (2 c1 + b1 x0) && b1 - b2 != 0 &&
x1 == (-c1 + c2)/(b1 - b2) && y1 == c1 + b1 x1 + a1 x1^2 &&
x2 == -(b2/(2 a1)) && y2 == 1/2 (2 c2 + b2 x2)) || (a1 != 0 &&
x0 == -(b1/(2 a1)) && y0 == 1/2 (2 c1 + b1 x0) &&
a1 - a2 !=
0 && (x1 == (-b1 + b2 -
Sqrt[(b1 - b2)^2 - 4 (a1 - a2) (c1 - c2)])/(2 (a1 - a2)) ||
x1 == (-b1 + b2 + Sqrt[(b1 - b2)^2 - 4 (a1 - a2) (c1 - c2)])/(
2 (a1 - a2))) && y1 == c1 + b1 x1 + a1 x1^2 && a2 != 0 &&
x2 == -(b2/(2 a2)) && y2 == 1/2 (2 c2 + b2 x2))