In the book "$Mathematica$ A System for Doing Mathematics by Computer", Addison-Wesley, 1988, § 0.4, p. 7 the following integral is given:
(* V 1.0 *)
In[6]:= Integrate[x/(1 - x^3), x]
Out[6]= -(ArcTan[(1 + 2 x)/Sqrt[3]]/Sqrt[3]) - 1/3 Log[-1 + x] +
1/6 Log[1 + x + x^2]
now it reads
(* V 11.0 *)
In[1]:= Integrate[x/(1 - x^3), x]
Out[1]= -(ArcTan[(1 + 2 x)/Sqrt[3]]/Sqrt[3]) - 1/3 Log[1 - x] +
1/6 Log[1 + x + x^2]
The logarithm changed the sign of its argument. The funktion x/(1 - x^3) has a singularity at x = 1, so let's test the result for x > 1:
In[2]:= Clear[f]
f[x_] := -(ArcTan[(1 + 2 x)/Sqrt[3]]/Sqrt[3]) - 1/3 Log[1 - x] +
1/6 Log[1 + x + x^2]
with
In[6]:= Limit[f[x], x -> \[Infinity]]
Out[6]= -(1/6) (2 I + Sqrt[3]) \[Pi]
The definite integral works because both summands have the same imaginary part:
In[5]:= Limit[f[x], x -> \[Infinity]] - f[2] // Simplify
Out[5]= 1/6 (-Sqrt[3] \[Pi] + 2 Sqrt[3] ArcTan[5/Sqrt[3]] - Log[7])
In[7]:= N[%5]
Out[7]= -0.516849
In[8]:= NIntegrate[x/(1 - x^3), {x, 2, \[Infinity]}]
Out[8]= -0.516849
the correct solution is
In[10]:= fL[x_] := -(ArcTan[(1 + 2 x)/Sqrt[3]]/Sqrt[3]) -
1/3 Log[Abs[1 - x]] + 1/6 Log[1 + x + x^2]
In[11]:= Limit[fL[x], x -> \[Infinity]]
Out[11]= -(\[Pi]/(2 Sqrt[3]))
In[13]:= fL[2]
Out[13]= -(ArcTan[5/Sqrt[3]]/Sqrt[3]) + Log[7]/6
without spurious imaginary parts, as the integral tables say.