# Thirty Distinct Rectangle Polyhedron

Posted 5 years ago
8732 Views
|
1 Reply
|
5 Total Likes
|
 A cuboid makes use of three rectangles, each used twice. Is it possible to make a polyhedron where all the rectangles are distinct? I found a 30 rectangle solution. Here's some raw data for that image: dat={ {"1\[Times]1",{{8,14,9},{8,14,8},{8,13,8},{8,13,9}},{{0,0},{1,0},{1,1},{0,1}}}, {"1\[Times]11",{{13,3,9},{13,3,8},{13,14,8},{13,14,9}},{{0,1},{0,0},{1,0},{1,1}}}, {"1\[Times]12",{{4,11,12},{4,11,0},{5,11,0},{5,11,12}},{{1,0},{0,0},{0,1},{1,1}}}, {"1\[Times]13",{{13,3,9},{13,3,8},{0,3,8},{0,3,9}},{{1,1},{1,0},{0,0},{0,1}}}, {"1\[Times]2",{{0,3,9},{0,3,8},{0,5,8},{0,5,9}},{{0,0},{0,1},{1,1},{1,0}}}, {"1\[Times]3",{{8,11,13},{5,11,13},{5,11,12},{8,11,12}},{{1,1},{0,1},{0,0},{1,0}}}, {"1\[Times]4",{{4,5,9},{4,5,8},{0,5,8},{0,5,9}},{{0,1},{0,0},{1,0},{1,1}}}, {"1\[Times]5",{{13,14,9},{13,14,8},{8,14,8},{8,14,9}},{{0,1},{0,0},{1,0},{1,1}}}, {"1\[Times]6",{{4,11,0},{4,5,0},{5,5,0},{5,11,0}},{{1,0},{0,0},{0,1},{1,1}}}, {"1\[Times]8",{{4,5,8},{4,5,0},{5,5,0},{5,5,8}},{{0,0},{1,0},{1,1},{0,1}}}, {"2\[Times]13",{{13,3,9},{0,3,9},{0,5,9},{13,5,9}},{{1,0},{0,0},{0,1},{1,1}}}, {"2\[Times]3",{{8,13,13},{5,13,13},{5,11,13},{8,11,13}},{{1,1},{0,1},{0,0},{1,0}}}, {"2\[Times]4",{{8,13,9},{8,11,9},{8,11,13},{8,13,13}},{{0,0},{0,1},{1,1},{1,0}}}, {"2\[Times]5",{{5,3,8},{0,3,8},{0,5,8},{5,5,8}},{{0,0},{1,0},{1,1},{0,1}}}, {"2\[Times]6",{{15,11,9},{15,5,9},{13,5,9},{13,11,9}},{{1,1},{0,1},{0,0},{1,0}}}, {"2\[Times]9",{{5,13,4},{5,11,4},{5,11,13},{5,13,13}},{{0,1},{0,0},{1,0},{1,1}}}, {"3\[Times]11",{{4,5,12},{4,5,9},{15,5,9},{15,5,12}},{{0,1},{0,0},{1,0},{1,1}}}, {"3\[Times]13",{{8,13,4},{5,13,4},{5,0,4},{8,0,4}},{{1,1},{1,0},{0,0},{0,1}}}, {"3\[Times]3",{{8,3,8},{5,3,8},{5,0,8},{8,0,8}},{{1,0},{1,1},{0,1},{0,0}}}, {"3\[Times]4",{{8,0,4},{5,0,4},{5,0,8},{8,0,8}},{{0,0},{0,1},{1,1},{1,0}}}, {"3\[Times]5",{{13,11,9},{8,11,9},{8,14,9},{13,14,9}},{{1,0},{0,0},{0,1},{1,1}}}, {"3\[Times]6",{{15,11,12},{15,5,12},{15,5,9},{15,11,9}},{{1,1},{0,1},{0,0},{1,0}}}, {"3\[Times]7",{{8,11,12},{8,11,9},{15,11,9},{15,11,12}},{{1,1},{1,0},{0,0},{0,1}}}, {"3\[Times]9",{{8,13,4},{5,13,4},{5,13,13},{8,13,13}},{{0,1},{0,0},{1,0},{1,1}}}, {"4\[Times]13",{{8,13,4},{8,0,4},{8,0,8},{8,13,8}},{{1,0},{0,0},{0,1},{1,1}}}, {"4\[Times]5",{{5,5,4},{5,0,4},{5,0,8},{5,5,8}},{{1,1},{0,1},{0,0},{1,0}}}, {"4\[Times]6",{{5,11,4},{5,5,4},{5,5,0},{5,11,0}},{{1,1},{0,1},{0,0},{1,0}}}, {"5\[Times]11",{{13,3,8},{8,3,8},{8,14,8},{13,14,8}},{{0,1},{0,0},{1,0},{1,1}}}, {"6\[Times]11",{{4,11,12},{4,5,12},{15,5,12},{15,11,12}},{{0,1},{0,0},{1,0},{1,1}}}, {"6\[Times]12",{{4,11,12},{4,5,12},{4,5,0},{4,11,0}},{{1,1},{1,0},{0,0},{0,1}}}}; Textures can be used to put the size of each rectangle on the appropriate face. obj = Graphics3D[ Table[{Texture[ Image[Rasterize[Style[dat[[n, 1]], 40], RasterSize -> 1200]]], Polygon[dat[[n, 2]], VertexTextureCoordinates -> dat[[n, 3]]]}, {n, 1, 30}], Lighting -> "Neutral", Boxed -> False, SphericalRegion -> True, ImageSize -> {500, 500}, ViewAngle -> Pi/9]; Then I just need to make a row of the graphics, and turn them to make an appropriate image. Row[{obj, obj}] My method for finding this was to look at polycubes. A cuboid has three repeats, so a solution made of cuboids would require that each touch three others. The L-polycube doesn't necessarily repeat any rectangles, but has two non-rectangular faces that need to be broken. There might be a L-cuboid solution where each touches 2 others. It exists, but needs 30 rectangles. I made the below function for it. I then had Mathematica do a large random search, and the input {4, 1, 3, 5, 2, 3, 2, 6, 2, 1, 4, 4, 1, 3, 1} seemed like the optimal solution. thirtyrects[{a1_,a2_,a3_,a4_,a5_,b1_,b2_,b3_,b4_,b5_,c1_,c2_,c3_,c4_,c5_}]:= {{{0,b1,c1+c2+c3},{0,b1,c1+c2},{0,b1+b2,c1+c2},{0,b1+b2,c1+c2+c3}}, {{a1,b1+b2+b3,c1+c2+c3+c4},{a1,b1+b2,c1+c2+c3+c4},{a1,b1+b2,0},{a1,b1+b2+b3,0}}, {{a1+a2,b1+b2,c1},{a1+a2,0,c1},{a1+a2,0,c1+c2},{a1+a2,b1+b2,c1+c2}}, {{a1+a2,b1+b2+b3,c1},{a1+a2,b1+b2,c1},{a1+a2,b1+b2,0},{a1+a2,b1+b2+b3,0}}, {{a1+a2,b1+b2+b3+b4,c1},{a1+a2,b1+b2+b3,c1},{a1+a2,b1+b2+b3,c1+c2+c3+c4+c5},{a1+a2,b1+b2+b3+b4,c1+c2+c3+c4+c5}}, {{a1+a2+a3,b1+b2+b3+b4,c1},{a1+a2+a3,0,c1},{a1+a2+a3,0,c1+c2},{a1+a2+a3,b1+b2+b3+b4,c1+c2}}, {{a1+a2+a3,b1+b2+b3+b4,c1+c2+c3},{a1+a2+a3,b1+b2+b3,c1+c2+c3},{a1+a2+a3,b1+b2+b3,c1+c2+c3+c4+c5},{a1+a2+a3,b1+b2+b3+b4,c1+c2+c3+c4+c5}}, {{a1+a2+a3,b1+b2+b3+b4+b5,c1+c2+c3},{a1+a2+a3,b1+b2+b3+b4+b5,c1+c2},{a1+a2+a3,b1+b2+b3+b4,c1+c2},{a1+a2+a3,b1+b2+b3+b4,c1+c2+c3}}, {{a1+a2+a3+a4,b1,c1+c2+c3},{a1+a2+a3+a4,b1,c1+c2},{a1+a2+a3+a4,b1+b2+b3+b4+b5,c1+c2},{a1+a2+a3+a4,b1+b2+b3+b4+b5,c1+c2+c3}}, {{a1+a2+a3+a4+a5,b1+b2+b3,c1+c2+c3+c4},{a1+a2+a3+a4+a5,b1+b2,c1+c2+c3+c4},{a1+a2+a3+a4+a5,b1+b2,c1+c2+c3},{a1+a2+a3+a4+a5,b1+b2+b3,c1+c2+c3}}, {{a1,b1+b2,c1+c2},{a1,b1+b2,0},{a1+a2,b1+b2,0},{a1+a2,b1+b2,c1+c2}}, {{a1,b1+b2,c1+c2+c3+c4},{a1,b1+b2,c1+c2+c3},{a1+a2+a3+a4+a5,b1+b2,c1+c2+c3},{a1+a2+a3+a4+a5,b1+b2,c1+c2+c3+c4}}, {{a1,b1+b2+b3,c1+c2+c3+c4},{a1,b1+b2+b3,0},{a1+a2,b1+b2+b3,0},{a1+a2,b1+b2+b3,c1+c2+c3+c4}},{{a1+a2+a3,0,c1},{a1+a2,0,c1},{a1+a2,0,c1+c2},{a1+a2+a3,0,c1+c2}}, {{a1,b1+b2,c1+c2+c3},{a1,b1+b2,c1+c2},{0,b1+b2,c1+c2},{0,b1+b2,c1+c2+c3}}, {{a1+a2+a3,b1+b2+b3,c1+c2+c3+c4},{a1+a2+a3,b1+b2+b3,c1+c2+c3},{a1+a2+a3+a4+a5,b1+b2+b3,c1+c2+c3},{a1+a2+a3+a4+a5,b1+b2+b3,c1+c2+c3+c4}}, {{a1+a2+a3,b1+b2+b3,c1+c2+c3+c4+c5},{a1+a2,b1+b2+b3,c1+c2+c3+c4+c5},{a1+a2,b1+b2+b3,c1+c2+c3+c4},{a1+a2+a3,b1+b2+b3,c1+c2+c3+c4}}, {{a1+a2+a3,b1+b2+b3+b4,c1},{a1+a2,b1+b2+b3+b4,c1},{a1+a2,b1+b2+b3+b4,c1+c2+c3+c4+c5},{a1+a2+a3,b1+b2+b3+b4,c1+c2+c3+c4+c5}}, {{a1+a2+a3+a4,b1,c1+c2+c3},{a1+a2+a3+a4,b1,c1+c2},{0,b1,c1+c2},{0,b1,c1+c2+c3}}, {{a1+a2+a3+a4,b1+b2+b3+b4+b5,c1+c2+c3},{a1+a2+a3+a4,b1+b2+b3+b4+b5,c1+c2},{a1+a2+a3,b1+b2+b3+b4+b5,c1+c2},{a1+a2+a3,b1+b2+b3+b4+b5,c1+c2+c3}}, {{a1,b1+b2+b3,0},{a1,b1+b2,0},{a1+a2,b1+b2,0},{a1+a2,b1+b2+b3,0}}, {{a1,b1+b2+b3,c1+c2+c3+c4},{a1,b1+b2,c1+c2+c3+c4},{a1+a2+a3+a4+a5,b1+b2,c1+c2+c3+c4},{a1+a2+a3+a4+a5,b1+b2+b3,c1+c2+c3+c4}}, {{a1+a2,b1,c1+c2},{0,b1,c1+c2},{0,b1+b2,c1+c2},{a1+a2,b1+b2,c1+c2}}, {{a1+a2+a3,b1,c1+c2},{a1+a2,b1,c1+c2},{a1+a2,0,c1+c2},{a1+a2+a3,0,c1+c2}}, {{a1+a2+a3,b1+b2+b3+b4,c1},{a1+a2,b1+b2+b3+b4,c1},{a1+a2,0,c1},{a1+a2+a3,0,c1}}, {{a1+a2+a3,b1+b2+b3+b4,c1+c2+c3+c4+c5},{a1+a2,b1+b2+b3+b4,c1+c2+c3+c4+c5},{a1+a2,b1+b2+b3,c1+c2+c3+c4+c5},{a1+a2+a3,b1+b2+b3,c1+c2+c3+c4+c5}}, {{a1+a2+a3+a4,b1,c1+c2},{a1+a2+a3,b1,c1+c2},{a1+a2+a3,b1+b2+b3+b4+b5,c1+c2},{a1+a2+a3+a4,b1+b2+b3+b4+b5,c1+c2}}, {{a1+a2+a3+a4,b1,c1+c2+c3},{0,b1,c1+c2+c3},{0,b1+b2,c1+c2+c3},{a1+a2+a3+a4,b1+b2,c1+c2+c3}}, {{a1+a2+a3+a4,b1+b2+b3,c1+c2+c3},{a1+a2+a3,b1+b2+b3,c1+c2+c3},{a1+a2+a3,b1+b2+b3+b4+b5,c1+c2+c3},{a1+a2+a3+a4,b1+b2+b3+b4+b5,c1+c2+c3}}, {{a1+a2+a3+a4+a5,b1+b2+b3,c1+c2+c3},{a1+a2+a3+a4+a5,b1+b2,c1+c2+c3},{a1+a2+a3+a4,b1+b2,c1+c2+c3},{a1+a2+a3+a4,b1+b2+b3,c1+c2+c3}}}; Is there a solution with fewer rectangles? Is there a solution that uses an entire set (sans blanks) of domino-based rectangles, such as the 36 in the double-8 set? Union[Sort /@ Tuples[Range[8], {2}]] 
Answer
1 Reply
Sort By:
Posted 5 years ago
 - another post of yours has been selected for the Staff Picks group, congratulations! We are happy to see you at the top of the "Featured Contributor" board. Thank you for your wonderful contributions, and please keep them coming!
Answer
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments