i'm a little more lost than the others but understand det and matrix algebra well
however when i "ran your code" i just got allot of errors. here's what i'm seeing so far, and i'm not sure whether it is what your looking for or not...
In[1094]:= Module[{n, [Theta]3, s, [CapitalDelta][Theta], l3, l2,
l1, [Theta]1, [Theta]2, f1, f2, F1, p1, J},
n = Real;
p1[s, [Theta]3] = ({{[Theta]3}, {s}});
p1[n_] = ({{[Theta]3}, {s}});
[CapitalDelta][Theta] = 10*Pi/180;
l2 = Rationalize@0.20;
l3 = Rationalize@0.45;
[Theta]1 = [Pi];
n = 0;
[Theta]2 = Pi/6;
[Epsilon] = 0.00001;
[Theta]2max = 2 Pi;
f1[p1[[Theta]3, s]] =
sCos[[Theta]1] + l2Cos[[Theta]2] + l3*Cos[[Theta]3];
f2[p1[[Theta]3, s]] =
sSin[[Theta]1] + l2Sin[[Theta]2] + l3*Sin[[Theta]3];
F1 = ({{f1[p1[[Theta]3, s]]}, {f2[p1[[Theta]3, s]]}});
p1[0] = ({{0}, {l2 + l3}});
J[p1[[Theta]3,
s]] = ({{D[f1[p1[[Theta]3, s]], s],
D[f1[p1[[Theta]3, s]], [Theta]3]}, {D[f2[p1[[Theta]3, s]], s],
D[f2[p1[[Theta]3, s]], [Theta]3]}});
ddet = Det[({{D[f1[p1[[Theta]3, s]], s],
D[f1[p1[[Theta]3, s]], [Theta]3]}, {D[f2[p1[[Theta]3, s]],
s], D[f2[p1[[Theta]3, s]], [Theta]3]}})];
Print@ddet;
M = MatrixForm[Inverse[J[p1[s, [Theta]3]]]]
]
During evaluation of In[1094]:= 0
Out[1094]//MatrixForm= \!(
TagBox[
RowBox[{"(", "", GridBox[{
{
RowBox[{"-", "1"}],
RowBox[{"-",
RowBox[{"Tan", "[", "[Theta]3$", "]"}]}]},
{"0",
FractionBox[
RowBox[{"20", " ",
RowBox[{"Sec", "[", "[Theta]3$", "]"}]}], "9"]}
},
GridBoxAlignment->{
"Columns" -> {{Center}}, "ColumnsIndexed" -> {},
"Rows" -> {{Baseline}}, "RowsIndexed" -> {}},
GridBoxSpacings->{"Columns" -> {
Offset[0.27999999999999997], {
Offset[0.7]},
Offset[0.27999999999999997
]}, "ColumnsIndexed" -> {}, "Rows" -> {
Offset[0.2], {
Offset[0.4]},
Offset[0.2]}, "RowsIndexed" -> {}}], "", ")"}],
Function[BoxForme$,
MatrixForm[BoxForm
e$]]])