Look at the eigenvalues of this symmetric matrix:
Ch[x_] :=
CharacteristicPolynomial[{{qd + 2 qo + qv, -qo, -qo, -qd,
0, -qv}, {-qo, qd + 2 qo + qv, -qo, -qv, -qd, 0}, {-qo, -qo,
qd + 2 qo + qv, 0, -qv, -qd}, {-qd, -qv, 0,
qd + 2 qu + qv, -qu, -qu}, {0, -qd, -qv, -qu,
qd + 2 qu + qv, -qu}, {-qv, 0, -qd, -qu, -qu, qd + 2 qu + qv}},
x] // FullSimplify
They are given by:
Res = x //. Solve[Ch[x] == 0, x]
Zero is an eigenvalue, and the other ones consist in 2 (qd + qv), and two pairs of other roots (Res[[3]]==Res[[4]] and Res[[5]]==Res[[6]]). In order that your system is exactly of rank 2, you must have qd + qv=0 and either Res[[3]]=0 or Res[[5]]=0.