Message Boards Message Boards

[GIF] Counter-rotating Vortices

Posted 8 years ago

enter image description here

Here we see some alternate views and versions of the shape governed by: enter image description here

One is rotating one way, and the same shape of opposite chirality is rotating the other way. I've chosen R/r =E (approximately) because it results in a 90degree overcrossing at the center, which I think looks cool and seems like a natural choice.

Here is a closer look at the last image:

enter image description here

r = 7.;
R = 19.;
plaht1[d_, rotation_] := ParametricPlot3D[{
   u^Sin[r/R t] Sin[t + rotation],
   u^Sin[r/R t] Cos[t + rotation],
   Cos[r/R t] Log[u]
   }, {t, 0, R* 2 Pi}, {u, 1 + d (E - 1)/20, 1 + (1 + d) (E - 1)/20}, 
  PlotPoints -> {1000, 10}, PlotRange -> All, MaxRecursion -> 0, 
  PlotStyle -> {RGBColor[1, 0.75, 0.6], Thickness[0.04]}, 
  Boxed -> False, Mesh -> False, Axes -> False]

plaht2[d_, rotation_] := ParametricPlot3D[{
   u^Sin[r/R t] Sin[t - rotation],
   u^Sin[r/R t] Cos[t - rotation],
   -Cos[r/R t] Log[u]
   }, {t, 0, R* 2 Pi}, {u, 1 + d (E - 1)/20, 1 + (1 + d) (E - 1)/20}, 
  PlotPoints -> {1000, 10}, PlotRange -> All, MaxRecursion -> 0, 
  PlotStyle -> {RGBColor[0, 0.25, 0.4], Thickness[0.04]}, 
  Boxed -> False, Mesh -> False, Axes -> False]
plaht3[rotation_, viewvector_] := ParametricPlot3D[{
   u^Sin[r/R t] Sin[t - rotation],
   u^Sin[r/R t] Cos[t - rotation],
   -Cos[r/R t] Log[u]
   }, {t, 0, R* 2 Pi}, {u, 1, E}, PlotPoints -> {1000, 10}, 
  PlotRange -> All, MaxRecursion -> 0, 
  PlotStyle -> {RGBColor[0, 0.25, 0.4], Thickness[0.04]}, 
  Boxed -> False, Mesh -> False, Axes -> False, 
  ViewVector -> viewvector]
plaht4[rotation_, viewvector_] := ParametricPlot3D[{
   u^Sin[r/R t] Sin[t + rotation],
   u^Sin[r/R t] Cos[t + rotation],
   Cos[r/R t] Log[u]
   }, {t, 0, R* 2 Pi}, {u, 1, E}, PlotPoints -> {1000, 10}, 
  PlotRange -> All, MaxRecursion -> 0, 
  PlotStyle -> {RGBColor[1, 0.75, 0.6], Thickness[0.04]}, 
  Boxed -> False, Mesh -> False, Axes -> False, 
  ViewVector -> viewvector]
plaht5[rotation_] := ParametricPlot3D[{
   {u^Sin[r/R t] Sin[t + rotation],
    u^Sin[r/R t] Cos[t + rotation],
    Cos[r/R t] Log[u]},
   {u^Sin[r/R t] Sin[t - rotation],
    u^Sin[r/R t] Cos[t - rotation],
    -Cos[r/R t] Log[u]}
   }, {t, 0, R* 2 Pi}, {u, 1, E}, PlotPoints -> {1000, 10}, 
  PlotRange -> All, MaxRecursion -> 0, 
  PlotStyle -> {{RGBColor[1, 0.75, 0.6], 
     Thickness[0.04]}, {RGBColor[0, 0.25, 0.4], Thickness[0.04]}}, 
  Boxed -> False, Mesh -> False, Axes -> False]
plaht6[rotation_] := ParametricPlot3D[{
   {u^Sin[r/R t] Sin[t + rotation],
    u^Sin[r/R t] Cos[t + rotation],
    Cos[r/R t] Log[u]},
   {u^Sin[r/R t] Sin[t - rotation],
    u^Sin[r/R t] Cos[t - rotation],
    -Cos[r/R t] Log[u]}
   }, {t, 0, R* 2 Pi}, {u, 1, E}, PlotPoints -> {1000, 10}, 
  PlotRange -> {{-E, E}, {0, E}}, MaxRecursion -> 0, 
  PlotStyle -> {{RGBColor[1, 0.75, 0.6], 
     Thickness[0.04]}, {RGBColor[0, 0.25, 0.4], Thickness[0.04]}}, 
  Background -> LightGray, Boxed -> False, Mesh -> False, 
  Axes -> False, ViewPoint -> Front]
Do[Export[StringJoin[ToString[rotation], ".png"],
  GraphicsGrid[{
    {plaht3[rotation, {5, -28, 5}], plaht4[rotation, {5, -28, 5}], 
     plaht5[rotation, {5, -28, 5}]}, {Show[plaht5[rotation], 
      ViewVector -> {50, -75, 150}], 
     Show[plaht5[rotation], ViewPoint -> Top], plaht6[rotation]},
    {Show[plaht1[14, rotation ], plaht1[16, rotation ], 
      plaht1[18, rotation ], plaht2[15, rotation], 
      plaht2[17, rotation], plaht2[19, rotation], 
      ViewVertical -> {-20, 15, 10}], 
     Show[plaht1[14, rotation ], plaht1[16, rotation ], 
      plaht1[18, rotation ], plaht2[15, rotation], 
      plaht2[17, rotation], plaht2[19, rotation], ViewPoint -> Top], 
     Show[plaht1[14, rotation ], plaht1[16, rotation ], 
      plaht1[18, rotation ], plaht2[15, rotation], 
      plaht2[17, rotation], plaht2[19, rotation], 
      ViewPoint -> Front]}


    }, ImageSize -> 800, Spacings -> 0]],
 {rotation, 0, 6.2, 0.1}]
POSTED BY: Bryan Lettner
3 Replies

enter image description here - Congratulations! This post is now a Staff Pick! Thank you for your wonderful contributions. Please, keep them coming!

POSTED BY: EDITORIAL BOARD
Posted 8 years ago

thanks enjoyed your chaos game post as well!

POSTED BY: Bryan Lettner

Mesmerising! Thanks for sharing!

POSTED BY: Sander Huisman
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract