I am trying to plot a line in Oblate Spheroidal Coordinate system (OS). I want to seek the equation in the OS from the code
CoordinateTransformData[
"Spherical" -> "Cartesian", "Mapping", {r, \[Theta], \[CurlyPhi]}]
CoordinateTransformData[
"Cartesian" -> "Spherical", "Mapping", {x, y, z}]
CoordinateTransformData["Cartesian" -> "Spherical",
"Mapping", {r Cos[\[CurlyPhi]] Sin[\[Theta]],
r Sin[\[Theta]] Sin[\[CurlyPhi]], r Cos[\[Theta]]}] // FullSimplify
But the result I am getting is not the same
FullSimplify[{Sqrt[r^2],
ArcTan[r Cos[\[Theta]], Sqrt[r^2 Sin[\[Theta]]^2]],
ArcTan[r Cos[\[CurlyPhi]] Sin[\[Theta]],
r Sin[\[Theta]] Sin[\[CurlyPhi]]]} == {r, \[Theta], \[CurlyPhi]}]
Out[62]= {Sqrt[x^2+y^2+z^2],ArcTan[z,Sqrt[x^2+y^2]],ArcTan[x,y]}
Out[63]= {Sqrt[r^2],ArcTan[r Cos[\[Theta]],Sqrt[r^2 Sin[\[Theta]]^2]],ArcTan[r Cos[\[CurlyPhi]] Sin[\[Theta]],r Sin[\[Theta]] Sin[\[CurlyPhi]]]}
In[65]:= FullSimplify[{Sqrt[r^2],ArcTan[r Cos[\[Theta]],Sqrt[r^2 Sin[\[Theta]]^2]],ArcTan[r Cos[\[CurlyPhi]] Sin[\[Theta]],r Sin[\[Theta]] Sin[\[CurlyPhi]]]}=={r,\[Theta],\[CurlyPhi]}]
Out[65]= {Sqrt[r^2],ArcTan[r Cos[\[Theta]],Sqrt[r^2 Sin[\[Theta]]^2]],ArcTan[r Cos[\[CurlyPhi]] Sin[\[Theta]],r Sin[\[Theta]] Sin[\[CurlyPhi]]]}=={r,\[Theta],\[CurlyPhi]}
Not getting the transformation from OS back to its cartesian coordiantes. Why is this?