Group Abstract Group Abstract

Message Boards Message Boards

0
|
5.3K Views
|
2 Replies
|
0 Total Likes
View groups...
Share
Share this post:

[?] Get expected transformation from OblateSpheroidal to Cartesian?

I am trying to plot a line in Oblate Spheroidal Coordinate system (OS). I want to seek the equation in the OS from the code

CoordinateTransformData[
 "Spherical" -> "Cartesian", "Mapping", {r, \[Theta], \[CurlyPhi]}]
CoordinateTransformData[
 "Cartesian" -> "Spherical", "Mapping", {x, y, z}]
CoordinateTransformData["Cartesian" -> "Spherical", 
  "Mapping", {r Cos[\[CurlyPhi]] Sin[\[Theta]], 
   r Sin[\[Theta]] Sin[\[CurlyPhi]], r Cos[\[Theta]]}] // FullSimplify

But the result I am getting is not the same

FullSimplify[{Sqrt[r^2], 
   ArcTan[r Cos[\[Theta]], Sqrt[r^2 Sin[\[Theta]]^2]], 
   ArcTan[r Cos[\[CurlyPhi]] Sin[\[Theta]], 
    r Sin[\[Theta]] Sin[\[CurlyPhi]]]} == {r, \[Theta], \[CurlyPhi]}]



Out[62]= {Sqrt[x^2+y^2+z^2],ArcTan[z,Sqrt[x^2+y^2]],ArcTan[x,y]}
Out[63]= {Sqrt[r^2],ArcTan[r Cos[\[Theta]],Sqrt[r^2 Sin[\[Theta]]^2]],ArcTan[r Cos[\[CurlyPhi]] Sin[\[Theta]],r Sin[\[Theta]] Sin[\[CurlyPhi]]]}
In[65]:= FullSimplify[{Sqrt[r^2],ArcTan[r Cos[\[Theta]],Sqrt[r^2 Sin[\[Theta]]^2]],ArcTan[r Cos[\[CurlyPhi]] Sin[\[Theta]],r Sin[\[Theta]] Sin[\[CurlyPhi]]]}=={r,\[Theta],\[CurlyPhi]}]
Out[65]= {Sqrt[r^2],ArcTan[r Cos[\[Theta]],Sqrt[r^2 Sin[\[Theta]]^2]],ArcTan[r Cos[\[CurlyPhi]] Sin[\[Theta]],r Sin[\[Theta]] Sin[\[CurlyPhi]]]}=={r,\[Theta],\[CurlyPhi]}

Not getting the transformation from OS back to its cartesian coordiantes. Why is this?

POSTED BY: Jose Calderon
2 Replies

Moreover, not all these mappings are 'unique', so going from spherical to cartesian and back to spherical does not always give the same coordinates. Examples include the poles and the center for which for r=0…

POSTED BY: Sander Huisman

You need to include some assumptions, r being positive, theta being real, et cetera:

Something like:

FullSimplify[{Sqrt[r^2], 
   ArcTan[r Cos[\[Theta]], Sqrt[r^2 Sin[\[Theta]]^2]], 
   ArcTan[r Cos[\[CurlyPhi]] Sin[\[Theta]], 
    r Sin[\[Theta]] Sin[\[CurlyPhi]]]} == {r, \[Theta], \[CurlyPhi]}, 
 r > 0 \[And] 
  0 < \[Theta] < Pi \[And] \[Theta] \[Element] Reals \[And] 
  0 < \[CurlyPhi] < Pi \[And] \[CurlyPhi] \[Element] Reals]

returns:

True
POSTED BY: Sander Huisman
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard