A non-mathematica friend of mine had an idea for this endless 3D animation, where the third dimension is simulated with 2D graphics, and I just coded it up:
Note the use of bit-wise logic ;)
f[t_]:=Module[{g},
g[z_] := Module[{fs,w,n,m,x,y,c},
If[z>0, For[
w = (1/z*4000.); c = (Clip[#,{0,1}]&)/@({w/4/255,w/2/255,w/255,0.95}); fs = RGBColor@@c; i = z*z*2,
n = Mod[i,z]; m=IntegerPart[i/BitOr[z,0]]; i>0, i--;
If[BitXor[Mod[n,2],Mod[m,2]]!=0,
{x, y} = {(n-Mod[t,2]-1.)*w, (Sin[t]+m-1.)*w};
Sow @ {fs, Disk[{x,y}, w/2.5]};
]
];g[z-6]
]]; Check[Reap[g[36]][[2,1]], {}]
]
Manipulate[Graphics[f[t], Axes -> False, Background -> Black,
PlotRange -> {{0, 1600}, {0, 1200}}, ImageSize -> 500], {t, 0, 2 \[Pi], .2}]
But any shape will do:
Happy New Years!