I am running a Monte Carlo simulation to compare errors from least squares method and quantile regression.
I have generated the data as per below (y = x Beta + error), for three different beta's. (\[Tau] is my quantile level)
The data is ready for LinearModelFit. But how can I apply the rq function in R from the quantreg library to my data?
I appreciate your help. This community is awesome.
Thanks in advance,
Thad
Set n, m and \[Tau]
n = 1000;
m = n;
\[Tau] = 0.9;
columns = 100;
Generate data
SeedRandom[1976];
xdata = Table[RandomVariate[NormalDistribution[], n], columns];
\[Epsilon]data = Table[RandomVariate[NormalDistribution[], n], columns];
\[Beta]data = {1/3, 1, 3};
num\[Beta] = Length[\[Beta]data];
ydata = Table[xdata \[Beta]data[[k]] + \[Epsilon]data, {k, num\[Beta]}];
data = Table[
Transpose[{xdata[[k]],ydata[[q, k]]}], {q, num\[Beta]}, {k, columns}];
Run Least Squares
lsFunc = Table[LinearModelFit[#, x, x] & /@ data[[q]], {q, num\[Beta]}];
Moreover, I need the ability to extract the parameters from the quantile regression results, like I can do with LinearModelFit["BestFitParameters"] and ["FitResiduals"].