Thank you Neil, I tried your suggestions above and worked well for up to the 3rd derivative. For the 4th derivative, the value of "ExactCondCovegeProbLAB22" is a negative large number which is not correct because it is a probability (it should be between 0 and 1). I plotted "funTable2D" and "ifun2D" to see how good the interpolation function "ifun2D" is as follows
ListPlot3D[funTable2Dc]

Plot3D[ifun2D[s, r], {s, LlimitxS, UlimitxS}, {r, LlimitxR, UlimitxR}]

As we can see, the two functions does not look similar
LlimitxR = height; UlimitxR = Sqrt[RmaxAB^2 + height^2];
LlimitxS = parmtrLAB[LlimitxR]; UlimitxS = parmtrLAB[UlimitxR];
Print[111];
funTable2D =
Table[{s, r, Exp[-noisepow*s]*laplaceLAB[s, r]}, {s, LlimitxS,
UlimitxS, 10000}, {r, LlimitxR, UlimitxR, 500}];
Print[222];
funTable2Dc = Flatten[Chop[funTable2D], 1];
Print[333];
ifun2D = Interpolation[funTable2Dc, Method -> "Spline"];
Print[444];
funDervtveLAB22[s_, r_, kk_] := (-s)^kk/kk!*D[ifun2D[s, r], {s, kk}];
xxSumS22[s_, r_] :=
Sum[funDervtveLAB22[s, r, kk], {kk, 0, mLParm - 1}];
xxSumR22[r_] := xxSumS22[s, r] /. s -> (mLParm*sinr/zetaLAB*r^alfaLAB);
xxPdF22[r_] := xxSumR22[r]*CondPdfLAB[r];
ExactCondCovegeProbLAB22[[hIdx, mIdx]] =
NIntegrate[xxPdF22[r], {r, height, Sqrt[RmaxAB^2 + height^2]}];