Explore 
Wolfram Demonstrations on the subject  -  a lot of free code to download and nice looking applications. For example:
Taylor Polynomials by Harry Calkins
 Manipulate[
  Column[{Style[Row[{"series degree = ", deg}], "Label", 12], 
    Plot[Evaluate@{func /. x -> t, 
       MakeSeriesFunction[func, x, deg, pt]}, {t, 0, 2 Pi}, 
     PlotRange -> {{0, 2 Pi}, {-2, 2}}, 
     PlotStyle -> {{GrayLevel[.25, .85]}, {RGBColor[0, 0, .9, .8]}}, 
     Filling -> {1 -> {{2}, Directive[{Opacity[.1], Green}]}}, 
     Epilog -> {Red, PointSize[.02], Point[{pt, func /. x -> pt}], 
       Blue, Point[{pt, 0}], Dashing[{.01}], 
      Line[{{pt, func /. x -> pt}, {pt, 0}}]}, 
    ImageSize -> {500, 350}]}, Center], {{deg, 10, "series degree"}, 
  1, 24, 1}, {{pt, 0, "expansion point"}, 0, 
  2 Pi}, {{func, Sin[x], 
   "function"}, {Sin[x] -> TraditionalForm[Sin[x]], 
   Cos[x*2]/(x + 1) -> TraditionalForm[Cos[x*2]/(x + 1)], 
   1/(1 + x) -> TraditionalForm[1/(1 + x)], 
   E^x/100 -> TraditionalForm[E^x/100], 
   2 E^-(-3 + x)^2 -> TraditionalForm[2 E^-(-3 + x)^2]}}, 
 SaveDefinitions -> True, 
 Initialization :> {MakeSeriesFunction[fn_, var_, deg_, pt_] := 
    Module[{wrkfn},
     wrkfn[tt_] = 
      If[Head[fn] === Symbol && fn =!= var, fn[tt], fn /. var :> tt];
      Normal@Series[wrkfn[t], {t, pt, deg}]
     ]}]