Do not use C as a variable, since it is a built-in symbol in the system. We put X =WU2U0a - WU2U0b . In this problem we have a special case when X goes through 0 abruptly - see fig. Thus, all solvers fail on this problem. Fortunately, we can approximately determine the root of the equation as the minimum point X. It is possible that this solution makes sense for technical applications in trigger generators.
p = 9; Za = I*w*L + 1/(I*w*C1 + 2/Z0);
Zb = 1/(I*w*C1) + 1/(1/(I*w*L) + 2/Z0);
Zl = Re[1/(1/Za + 1/Zb)] - I*Im[1/(1/Za + 1/Zb)];
Zal = 1/(1/Zl + 1/Za);
Zbl = 1/(1/Zl + 1/Zb);
WU2U0a = Arg[Zbl/2/(1/(1/(Zbl + I*w*L) + I*w*C1) + Z0/2)];
WU2U0b = Arg[-Zal/
2/(Z0/2 + 1/(1/(1/(Zal + 1/(I*w*C1))) + (1/(I*w*L))))];
Z0 = 44 - I*15; w = Rationalize[2*Pi*868*^6, 10^-p]; L = 18*^-10;
X = WU2U0a - WU2U0b;
Block[{$MinPrecision = p, $MaxPrecision = p},
NMinimize[{X, 0 <= C1 < 5*10^-11}, C1, WorkingPrecision -> p]]
{-2.96652668, {C1 -> 2.77937850*10^-11}}
{Plot[X, {C1, 2.77`30*10^-11, 2.79`30*10^-11}],
Plot[{WU2U0a, WU2U0b}, {C1, 2.77`30*10^-11, 2.79`30*10^-11},
PlotLegends -> "Expressions"]}
