Group Abstract Group Abstract

Message Boards Message Boards

0
|
8K Views
|
5 Replies
|
2 Total Likes
View groups...
Share
Share this post:

Display a specific part of an output?

Posted 7 years ago

Hello,

I have created a code that can expand an expression then groups the output in terms of exponential powers. My code deals with the Homotopy Analysis Method. In this method the goal is to collect secular terms. As my interest is only these terms I am inquiring to see if there is a way to tell Mathematica to display only these terms and not the rest of the expansion. Below is an image of the expansion and collection of terms. I just want the output to display e^(iwt). I've attached the code for reference. Any help is appreciated.

I just want the output to display e^(i<em>wtau)

Attachments:
5 Replies

I am looking for Mathematica to display the grouping of E^(iwtau) so the output would be

output = e^(iwtau)*(.........................).

Is there a way for posters/contributors to show code samples in Standard Form? Reason I ask is that when I tried to copy and paste the original poster's equation into a Code Sample placeholder, it was automatically converted to what looks to me pretty much like FullForm. Which, in this case, isn't terribly easy to degroggle - compare the original poster's screenshot with the equivalent code sample shown below. If we're stuck with code samples only displaying the FullForm of expressions then perhaps for the case of more complex expressions a screenshot works better. Especially if the posting is accompanied by a notebook attachment that contains the expression(s) of interest. Just a thought...

\[CapitalOmega]^2 Subscript[u, 1][\[Tau]] + \[CapitalOmega]^2 (
    Subscript[u, 
    1]^\[Prime]\[Prime])[\[Tau]] == {-(1/2) c1 g1 \[Delta] Subscript[
    c, 0] - 1/4 c2 E^(-2 I \[Sigma] \[Tau])
     g2 \[Delta] A[\[Tau]] Subscript[c, 0] - 
   1/4 c4 E^(2 I \[Sigma] \[Tau] + 4 I \[Tau] \[Omega])
     g4 \[Delta] A[\[Tau]]^3 Subscript[c, 0] - 
   1/4 c2 E^(2 I \[Sigma] \[Tau]) g2 \[Delta] B[\[Tau]] Subscript[c, 
    0] - c3 g3 \[Delta] A[\[Tau]] B[\[Tau]] Subscript[c, 0] - 
   3/4 c4 E^(-2 I \[Sigma] \[Tau])
     g4 \[Delta] A[\[Tau]]^2 B[\[Tau]] Subscript[c, 0] - 
   3/4 c4 E^(2 I \[Sigma] \[Tau])
     g4 \[Delta] A[\[Tau]] B[\[Tau]]^2 Subscript[c, 0] - 
   1/4 c4 E^(-2 I \[Sigma] \[Tau] - 4 I \[Tau] \[Omega])
     g4 \[Delta] B[\[Tau]]^3 Subscript[c, 0] + 
   E^(3 I \[Tau] \[Omega]) (-(1/4) c3 E^(2 I \[Sigma] \[Tau])
        g3 \[Delta] A[\[Tau]]^2 Subscript[c, 0] - 
      1/2 c4 g4 \[Delta] A[\[Tau]]^3 Subscript[c, 0]) + 
   E^(2 I \[Tau] \[Omega]) (-(1/4) c2 E^(2 I \[Sigma] \[Tau])
        g2 \[Delta] A[\[Tau]] Subscript[c, 0] - 
      1/2 c3 g3 \[Delta] A[\[Tau]]^2 Subscript[c, 0] - 
      1/4 c4 E^(-2 I \[Sigma] \[Tau])
        g4 \[Delta] A[\[Tau]]^3 Subscript[c, 0] - 
      3/4 c4 E^(2 I \[Sigma] \[Tau])
        g4 \[Delta] A[\[Tau]]^2 B[\[Tau]] Subscript[c, 0]) + 
   E^(-3 I \[Tau] \[Omega]) (-(1/4) c3 E^(-2 I \[Sigma] \[Tau])
        g3 \[Delta] B[\[Tau]]^2 Subscript[c, 0] - 
      1/2 c4 g4 \[Delta] B[\[Tau]]^3 Subscript[c, 0]) + 
   E^(-2 I \[Tau] \[Omega]) (-(1/4) c2 E^(-2 I \[Sigma] \[Tau])
        g2 \[Delta] B[\[Tau]] Subscript[c, 0] - 
      1/2 c3 g3 \[Delta] B[\[Tau]]^2 Subscript[c, 0] - 
      3/4 c4 E^(-2 I \[Sigma] \[Tau])
        g4 \[Delta] A[\[Tau]] B[\[Tau]]^2 Subscript[c, 0] - 
      1/4 c4 E^(2 I \[Sigma] \[Tau])
        g4 \[Delta] B[\[Tau]]^3 Subscript[c, 0]) + 
   E^(I \[Tau] \[Omega]) (-(1/4) c1 E^(2 I \[Sigma] \[Tau])
        g1 \[Delta] Subscript[c, 0] - 
      1/2 c2 g2 \[Delta] A[\[Tau]] Subscript[c, 0] - 
      1/4 c3 E^(-2 I \[Sigma] \[Tau])
        g3 \[Delta] A[\[Tau]]^2 Subscript[c, 0] - 
      1/2 c3 E^(2 I \[Sigma] \[Tau])
        g3 \[Delta] A[\[Tau]] B[\[Tau]] Subscript[c, 0] - 
      3/2 c4 g4 \[Delta] A[\[Tau]]^2 B[\[Tau]] Subscript[c, 0] + 
      I g2 \[Omega] A[\[Tau]] Subscript[c, 0] SuperStar[b] + 
      2 I g2 \[Omega] Subscript[c, 0] Derivative[1][A][\[Tau]] + 
      g2 Subscript[c, 0] SuperStar[b] Derivative[1][A][\[Tau]] + 
      g2 Subscript[c, 0] (A^\[Prime]\[Prime])[\[Tau]]) + 
   E^(-I \[Tau] \[Omega]) (-(1/4) c1 E^(-2 I \[Sigma] \[Tau])
        g1 \[Delta] Subscript[c, 0] - 
      1/2 c2 g2 \[Delta] B[\[Tau]] Subscript[c, 0] - 
      1/2 c3 E^(-2 I \[Sigma] \[Tau])
        g3 \[Delta] A[\[Tau]] B[\[Tau]] Subscript[c, 0] - 
      1/4 c3 E^(2 I \[Sigma] \[Tau])
        g3 \[Delta] B[\[Tau]]^2 Subscript[c, 0] - 
      3/2 c4 g4 \[Delta] A[\[Tau]] B[\[Tau]]^2 Subscript[c, 0] - 
      I g2 \[Omega] B[\[Tau]] Subscript[c, 0] SuperStar[b] - 
      2 I g2 \[Omega] Subscript[c, 0] Derivative[1][B][\[Tau]] + 
      g2 Subscript[c, 0] SuperStar[b] Derivative[1][B][\[Tau]] + 
      g2 Subscript[c, 0] (B^\[Prime]\[Prime])[\[Tau]])}
POSTED BY: Ian Williams

very nice Solution! I have treid it and got the same Result.

POSTED BY: Mostafa Sasan

Welcome to Wolfram Community! Please make sure you know the rules: https://wolfr.am/READ-1ST

The rules explain how to format your code properly. If you do not format code, it may become corrupted and useless to other members. Please EDIT your post and make sure code blocks start on a new paragraph and look framed and colored like this.

int = Integrate[1/(x^3 - 1), x];
Map[Framed, int, Infinity]

enter image description here

POSTED BY: EDITORIAL BOARD
POSTED BY: Ian Williams
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard