# [GIF] Recede (Concentric circles gradient)

Posted 3 months ago
884 Views
|
6 Replies
|
8 Total Likes
|
 RecedeJust a very simple gradient with concentric circles. One fun feature is the use of LogisticSigmoid[] for the color gradient. Here's the code: DynamicModule[{s, δ = 1/12, cols = RGBColor /@ {"#07090e", "#2bb3c0", "#faf7f2"}}, Manipulate[ Graphics[ Reverse[ Table[ s = Mod[r + i, 3/2]; {Blend[cols, LogisticSigmoid[8 (s - 1/2)]], Disk[{0, 0}, s]}, {i, 0, 3/2 - #, #}]] &[δ], PlotRange -> 1, ImageSize -> 540, Background -> cols[[-1]]], {r, 0, δ}] ] 
6 Replies
Sort By:
Posted 3 months ago
 Beautiful! Slightly modify the code above we can have the following anim = With[{\[Delta] = 1/12, cols = RGBColor /@ {"#07090e", "#2bb3c0", "#faf7f2"}}, Table[Graphics[Reverse[Table[s = Mod[r + i, 3/2]; {Blend[cols, LogisticSigmoid[8 (s - 1/2)]], Polygon@Map[RotationTransform[s], star52[2*s], {2}]}, {i, 0, 3/2 - #, #}]] &[\[Delta]], PlotRange -> 1, ImageSize -> 540, Background -> cols[[-1]]], {r, 0, \[Delta], 0.003}]]; Animate the plot: ListAnimate[anim~Join~anim] where star52 is a function from EntityClass["Lamina", "RegularPolygram"][EntityProperty["Lamina", "Vertices"]][[1]] 
Posted 3 months ago
 These are very cool! Thanks!
Posted 3 months ago
 Another modification is that if you wrap every verices with RotationMatrix w.r.t. s and r, you can have something like this: anim[offset_]:=With[{\[Delta]=1/12,cols=RGBColor/@{"#07090e","#2bb3c0","#faf7f2"}},Table[Graphics[Reverse[Table[s=Mod[r+i,3/2]; {Blend[cols,LogisticSigmoid[8 (s-1/2)]],Polygon@Map[RotationTransform[-s]@*RotationTransform[2*r*\[Pi]+offset],star52[2*s],{2}]},{i,0,3/2-#,#}]]&[\[Delta]],PlotRange->1,ImageSize->540,Background->cols[[-1]]],{r,0,\[Delta],0.004}]]; ListAnimate[anim[0]~Join~anim[\[Pi]/6]] 
Posted 3 months ago
 Another modification is that if you wrap every verices with RotationMatrix w.r.t. s and r, you can have something like this: anim[offset_]:=With[{\[Delta]=1/12,cols=RGBColor/@{"#07090e","#2bb3c0","#faf7f2"}},Table[Graphics[Reverse[Table[s=Mod[r+i,3/2]; {Blend[cols,LogisticSigmoid[8 (s-1/2)]],Polygon@Map[RotationTransform[-s]@*RotationTransform[2*r*\[Pi]+offset],star52[2*s],{2}]},{i,0,3/2-#,#}]]&[\[Delta]],PlotRange->1,ImageSize->540,Background->cols[[-1]]],{r,0,\[Delta],0.004}]]; ListAnimate[anim[0]~Join~anim[\[Pi]/6]] 
 Another modification is that if you wrap every verices with RotationMatrix w.r.t. s and r, you can have something like this: anim[offset_]:=With[{\[Delta]=1/12,cols=RGBColor/@{"#07090e","#2bb3c0","#faf7f2"}},Table[Graphics[Reverse[Table[s=Mod[r+i,3/2]; {Blend[cols,LogisticSigmoid[8 (s-1/2)]],Polygon@Map[RotationTransform[-s]@*RotationTransform[2*r*\[Pi]+offset],star52[2*s],{2}]},{i,0,3/2-#,#}]]&[\[Delta]],PlotRange->1,ImageSize->540,Background->cols[[-1]]],{r,0,\[Delta],0.004}]]; ListAnimate[anim[0]~Join~anim[\[Pi]/6]]