Message Boards Message Boards

GROUPS:

[GIF] Recede (Concentric circles gradient)

Posted 3 months ago
884 Views
|
6 Replies
|
8 Total Likes
|

Concentric circles gradient

Recede

Just a very simple gradient with concentric circles. One fun feature is the use of LogisticSigmoid[] for the color gradient. Here's the code:

DynamicModule[{s, δ = 1/12, cols = RGBColor /@ {"#07090e", "#2bb3c0", "#faf7f2"}},
 Manipulate[
  Graphics[
   Reverse[
      Table[
       s = Mod[r + i, 3/2];
       {Blend[cols, LogisticSigmoid[8 (s - 1/2)]], Disk[{0, 0}, s]},
       {i, 0, 3/2 - #, #}]] &[δ],
   PlotRange -> 1, ImageSize -> 540, Background -> cols[[-1]]],
  {r, 0, δ}]
 ]
6 Replies

Beautiful! Slightly modify the code above we can have the following

spiralstar

anim = With[{\[Delta] = 1/12, 
    cols = RGBColor /@ {"#07090e", "#2bb3c0", "#faf7f2"}}, 
   Table[Graphics[Reverse[Table[s = Mod[r + i, 3/2];
         {Blend[cols, LogisticSigmoid[8 (s - 1/2)]], 
          Polygon@Map[RotationTransform[s], star52[2*s], {2}]}, {i, 0,
           3/2 - #, #}]] &[\[Delta]], PlotRange -> 1, 
     ImageSize -> 540, Background -> cols[[-1]]], {r, 0, \[Delta], 
     0.003}]];

Animate the plot:

ListAnimate[anim~Join~anim]

where star52 is a function from

EntityClass["Lamina", "RegularPolygram"][EntityProperty["Lamina", "Vertices"]][[1]]

input

These are very cool! Thanks!

Another modification is that if you wrap every verices with RotationMatrix w.r.t. s and r, you can have something like this:

anim[offset_]:=With[{\[Delta]=1/12,cols=RGBColor/@{"#07090e","#2bb3c0","#faf7f2"}},Table[Graphics[Reverse[Table[s=Mod[r+i,3/2];
{Blend[cols,LogisticSigmoid[8 (s-1/2)]],Polygon@Map[RotationTransform[-s]@*RotationTransform[2*r*\[Pi]+offset],star52[2*s],{2}]},{i,0,3/2-#,#}]]&[\[Delta]],PlotRange->1,ImageSize->540,Background->cols[[-1]]],{r,0,\[Delta],0.004}]];

ListAnimate[anim[0]~Join~anim[\[Pi]/6]]

spiral2

Another modification is that if you wrap every verices with RotationMatrix w.r.t. s and r, you can have something like this:

anim[offset_]:=With[{\[Delta]=1/12,cols=RGBColor/@{"#07090e","#2bb3c0","#faf7f2"}},Table[Graphics[Reverse[Table[s=Mod[r+i,3/2];
{Blend[cols,LogisticSigmoid[8 (s-1/2)]],Polygon@Map[RotationTransform[-s]@*RotationTransform[2*r*\[Pi]+offset],star52[2*s],{2}]},{i,0,3/2-#,#}]]&[\[Delta]],PlotRange->1,ImageSize->540,Background->cols[[-1]]],{r,0,\[Delta],0.004}]];

ListAnimate[anim[0]~Join~anim[\[Pi]/6]]

spiral2

Another modification is that if you wrap every verices with RotationMatrix w.r.t. s and r, you can have something like this:

anim[offset_]:=With[{\[Delta]=1/12,cols=RGBColor/@{"#07090e","#2bb3c0","#faf7f2"}},Table[Graphics[Reverse[Table[s=Mod[r+i,3/2];
{Blend[cols,LogisticSigmoid[8 (s-1/2)]],Polygon@Map[RotationTransform[-s]@*RotationTransform[2*r*\[Pi]+offset],star52[2*s],{2}]},{i,0,3/2-#,#}]]&[\[Delta]],PlotRange->1,ImageSize->540,Background->cols[[-1]]],{r,0,\[Delta],0.004}]];

ListAnimate[anim[0]~Join~anim[\[Pi]/6]]

spiral2

enter image description here - Congratulations! This post is now a Staff Pick as distinguished by a badge on your profile! Thank you, keep it coming, and consider contributing your work to the The Notebook Archive!

Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract