Message Boards Message Boards

[GIF] Recede (Concentric circles gradient)

Concentric circles gradient

Recede

Just a very simple gradient with concentric circles. One fun feature is the use of LogisticSigmoid[] for the color gradient. Here's the code:

DynamicModule[{s, ? = 1/12, cols = RGBColor /@ {"#07090e", "#2bb3c0", "#faf7f2"}},
 Manipulate[
  Graphics[
   Reverse[
      Table[
       s = Mod[r + i, 3/2];
       {Blend[cols, LogisticSigmoid[8 (s - 1/2)]], Disk[{0, 0}, s]},
       {i, 0, 3/2 - #, #}]] &[?],
   PlotRange -> 1, ImageSize -> 540, Background -> cols[[-1]]],
  {r, 0, ?}]
 ]
6 Replies

Beautiful! Slightly modify the code above we can have the following

spiralstar

anim = With[{\[Delta] = 1/12, 
    cols = RGBColor /@ {"#07090e", "#2bb3c0", "#faf7f2"}}, 
   Table[Graphics[Reverse[Table[s = Mod[r + i, 3/2];
         {Blend[cols, LogisticSigmoid[8 (s - 1/2)]], 
          Polygon@Map[RotationTransform[s], star52[2*s], {2}]}, {i, 0,
           3/2 - #, #}]] &[\[Delta]], PlotRange -> 1, 
     ImageSize -> 540, Background -> cols[[-1]]], {r, 0, \[Delta], 
     0.003}]];

Animate the plot:

ListAnimate[anim~Join~anim]

where star52 is a function from

EntityClass["Lamina", "RegularPolygram"][EntityProperty["Lamina", "Vertices"]][[1]]

input

POSTED BY: Shenghui Yang

Another modification is that if you wrap every verices with RotationMatrix w.r.t. s and r, you can have something like this:

anim[offset_]:=With[{\[Delta]=1/12,cols=RGBColor/@{"#07090e","#2bb3c0","#faf7f2"}},Table[Graphics[Reverse[Table[s=Mod[r+i,3/2];
{Blend[cols,LogisticSigmoid[8 (s-1/2)]],Polygon@Map[RotationTransform[-s]@*RotationTransform[2*r*\[Pi]+offset],star52[2*s],{2}]},{i,0,3/2-#,#}]]&[\[Delta]],PlotRange->1,ImageSize->540,Background->cols[[-1]]],{r,0,\[Delta],0.004}]];

ListAnimate[anim[0]~Join~anim[\[Pi]/6]]

spiral2

POSTED BY: Shenghui Yang

Another modification is that if you wrap every verices with RotationMatrix w.r.t. s and r, you can have something like this:

anim[offset_]:=With[{\[Delta]=1/12,cols=RGBColor/@{"#07090e","#2bb3c0","#faf7f2"}},Table[Graphics[Reverse[Table[s=Mod[r+i,3/2];
{Blend[cols,LogisticSigmoid[8 (s-1/2)]],Polygon@Map[RotationTransform[-s]@*RotationTransform[2*r*\[Pi]+offset],star52[2*s],{2}]},{i,0,3/2-#,#}]]&[\[Delta]],PlotRange->1,ImageSize->540,Background->cols[[-1]]],{r,0,\[Delta],0.004}]];

ListAnimate[anim[0]~Join~anim[\[Pi]/6]]

spiral2

POSTED BY: Shenghui Yang

Another modification is that if you wrap every verices with RotationMatrix w.r.t. s and r, you can have something like this:

anim[offset_]:=With[{\[Delta]=1/12,cols=RGBColor/@{"#07090e","#2bb3c0","#faf7f2"}},Table[Graphics[Reverse[Table[s=Mod[r+i,3/2];
{Blend[cols,LogisticSigmoid[8 (s-1/2)]],Polygon@Map[RotationTransform[-s]@*RotationTransform[2*r*\[Pi]+offset],star52[2*s],{2}]},{i,0,3/2-#,#}]]&[\[Delta]],PlotRange->1,ImageSize->540,Background->cols[[-1]]],{r,0,\[Delta],0.004}]];

ListAnimate[anim[0]~Join~anim[\[Pi]/6]]

spiral2

POSTED BY: Shenghui Yang

These are very cool! Thanks!

enter image description here - Congratulations! This post is now a Staff Pick as distinguished by a badge on your profile! Thank you, keep it coming, and consider contributing your work to the The Notebook Archive!

POSTED BY: EDITORIAL BOARD
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract