If you want to calculate the constraints for the angles you can do it this way:
cond1 = Sqrt[x^2 + y^2 + z^2] <= 1 && z > 0;
cond2 = Sqrt[x^2 + y^2 + z^2] <= 1 && x > 0 && z > 0;
If you replace x,y,z with there representation in spherical coordinates, you get conditions for r and some trigonometric expressions:
cond3 = Simplify[
cond1 /. Thread[{x, y, z} ->
CoordinateTransform[
"Spherical" -> "Cartesian", {r, \[Theta], \[Phi]}]], r > 0]
"Reduce" can be used to derive finally constraints for the angles themself:
Reduce[cond3 && 0 <= \[Theta] <= \[Pi], \[Theta]]
cond4 = Simplify[
cond2 /. Thread[{x, y, z} ->
CoordinateTransform[
"Spherical" -> "Cartesian", {r, \[Theta], \[Phi]}]], r > 0]
Reduce[cond4 && 0 <= \[Theta] <= \[Pi] &&
0 <= \[Phi] <= 2 \[Pi], {\[Phi], \[Theta]}]
Using region functionalities you can easily compute the volumes and display the defined regions:
reg1 = ImplicitRegion[cond1, {x, y, z}];
reg2 = ImplicitRegion[cond2, {x, y, z}];
RegionMeasure can be used to compute the volume:
{RegionMeasure[reg1, 3], RegionMeasure[reg2, 3]}
Region will display the defined regions:
{Region[reg1], Region[reg2]}