Shenghui, thanks for your comment. I tried Butterfly Theorem.
Butterfly Theorem
Let M be the midpoint of a chord PQ of a circle, through which two other chords AB and CD are drawn; AD and BC intersect chord PQ at X and Y correspondingly. Then M is the midpoint of XY.
gs = GeometricScene[{"A", "B", "C", "D", "P", "Q", "M", "X", "Y"},
{GeometricAssertion[CircleThrough[{"A", "P", "D", "B", "Q", "C"}],
"Counterclockwise"],
GeometricAssertion[{{"A", "M", "B"}, {"C", "M", "D"}},
"Collinear"],
"M" == Midpoint[{"P", "Q"}],
Line[{{"P", "X", "Q"}, {"A", "X", "D"}, {"P", "Y", "Q"}, {"C",
"Y", "B"}}],
Line[{{"A", "B"}, {"C", "D"}, {"A", "D"}, {"B", "C"}}],
Style[Line[{"X", "Y"}], Orange]
}
];
RandomInstance[gs]
FindGeometricConjectures[gs]["Conclusions"]
