Message Boards Message Boards

2
|
5090 Views
|
2 Replies
|
2 Total Likes
View groups...
Share
Share this post:

The interval between the twin prime (1) and the next twin prime (2)

Posted 5 years ago

There is no simple rule between the prime number $p_n$ and the next prime number $p_{n+1}$ that cannot be predicted. Similarly, the interval between the twin prime number $Tp_n$ and the next twin prime number $Tp_{n+1}$ cannot be predicted. Considering two twin primes as a set of four primes $\{p_{m1},p_{p1},p_{m2},p_{p2}\}$, it can be described as $Tp_1=\{p_{m1},p_{p1}\}$ and $Tp_2=\{p_{m2},p_{p2}\}$.

Here, it is assumed that there are no other twin prime numbers between $Tp_1$ and $Tp_2$. The difference between $p_{m2}$ and $p_{p1}$ is defined as$"{\rm interval}"$. When the first prime number $p_{m1}$ is specified, the other three prime numbers are defined by equation $(1)$.

$$Tp_1= \{p_{m1},p_{p1}\}?{\rm interval}?Tp_2=\{p_{m2},p_{p2}\}$$

$$\begin{eqnarray} {\rm interval}&=&p_{m2}-p_{p1}\\ p_{p1}&=&p_{m1}+2\\ p_{m2}&=&p_{p1}+{\rm interval}\tag{1}\\ p_{p2}&=&p_{m2}+2\\ \end{eqnarray}$$

Look at the following graph.

enter image description here

The horizontal axis of this graph is the "${\rm interval} $" (=$p{m2}-p{p1} $) of the twin prime $Tp_1$ and the next twin prime $Tp_2$. The vertical axis is the frequency of occurrence, and the parameter is approximately 61000. What you can see in the graph is the fact that there is a solution only if the "${\rm interval} $" is $4,10,16,22,?$. In the case of $6,8,12,14,?$ there is no solution. I will omit the explanation, but this is because one or both of $Tp_2$ is not a prime number depending on the condition of equation ( $1$). (the sum of odd and odd numbers is even, multiples of 3 are involved)

Here we introduce a variable $r$ representing "${\rm interval} $". In equation ($2$), $r$ takes an integer value only when "${\rm interval} $" is $4,10,16,22, ?$.

$$\begin{eqnarray} r=\frac{1}{6}\times{\rm interval}+\frac{1}{3}\tag{2} \end{eqnarray}$$

$$\begin{equation}r=1,2,3\cdots\end{equation}$$

The purpose of this report is to give $r$ an "${\rm interval}$" and search for a set of twin primes that satisfy that condition. Twin prime numbers can be determined by the following four equations.

$$\begin{eqnarray} n&=&6 s_1^2+(6 s_1-1)(m_1-1)\tag{3a} \\ n&=&6 s_2^2+6 s_2+1+(6 s_2+1)(m_2-1)\tag{3b} \\ n&=&6 s_3^2-2 s_3+(6 s_3-1)(m_3-1)\tag{3c}\\ n&=&6 s_4^2+2 s_4+(6 s_4+1)(m_4-1)\tag{3d} \end{eqnarray}$$

$$\begin{equation}n=1,2,3\cdots\end{equation}$$

Give the same integer $n$ to these four equations ( $3$). When there is no integer solution for $s$ and $m$, a twin prime is born from the integer $n$.

When there are no integer solutions in $s$ and $m$, $n$ in equation ( $3$) is written as $n_t$. Using $n_t$, twin primes are given by equation ( $4$).

$$\begin{equation} {\rm Twin\ prime}= \left \{ \begin{array}{l} 6n_t-1 \\ 6n_t+1 \end{array} \right.\tag{4} \end{equation} $$

$$\begin{equation}n_t: {\rm In\ Equation\ (3),{\it n}\ when\ there\ is\ no\ integer\ solution\ for\ {\it s}\ and\ {\it m}.}\end{equation}$$

The following program inputs $n$ and $r$ and searches for a set of twin primes that satisfy the specified "${\rm interval} $". Note that "${\rm interval} $"$=6r-2$ from equation ( $2$).

n =    1;
r = 2;

Clear[nt1, nt2, nt3, pm1, pp1, pm2, pp2, pmr, ppr, intr, int1, int2];
n1 = n;
n2 = n + 1;
nr = n + r;
If[n > 0 && IntegerQ[n] && r > 0 && IntegerQ[r],
  Do[
   Do[func[n1];
    If[func[n1] == {{}, {}, {}, {}}, nt1 = n1, nt1 = 0]
     If[func[n1] == {{}, {}, {}, {}}, Break[]], {n1, n1, n1 + 100}];

   Do[func[n2];
    If[func[n2] == {{}, {}, {}, {}}, nt2 = n2, nt2 = 0]
     If[func[n2] == {{}, {}, {}, {}}, Break[]], {n2, n2, n2 + 100}];

   Do[func[nr];
    If[func[nr] == {{}, {}, {}, {}}, nt3 = nr, nt3 = 0]
     If[func[nr] == {{}, {}, {}, {}}, Break[]], {nr, nr, nr + 100}];

   pm1 = 6*nt1 - 1;
   pp1 = 6*nt1 + 1;
   pm2 = 6*nt2 - 1;
   pp2 = 6*nt2 + 1;
   pmr = 6*nr - 1;
   ppr = 6*nr + 1;
   intr = 6*r - 2;
   int1 = pm2 - pp1;
   int2 = pmr - pp1;

   n1 = n;
   n2 = n + 1;
   nr = n + r;
   If[int1 == intr && int2 == intr, Break[]], {n, n, n + 100}];

  Print["====== The calculation results are shown below. ======"];
  Print["n= ", n];
  Print["r= ", r];
  Print["Specified interval(6*r-2)= ", intr];
  If[int1 == intr && int2 == intr && nt1 > 0, 
   Print["n selected= ", nt1], Print["n selected= -- "]];

  If[int1 == intr && int2 == intr && nt1 > 0, 
   Print["Twin prime(1)= ", {6*nt1 - 1, 6*nt1 + 1}], 
   Print["Twin prime(1)= There are no twin primes in the interval,at \
(n)~(n+100)."]];
  If[int1 == intr && int2 == intr && nt2 > 0, 
   Print["Twin prime(2)= ", {6*nt2 - 1, 6*nt2 + 1}], 
   Print["Twin prime(2)= There are no twin primes in the interval,at \
(n)~(n+100)."]];

  If[int1 == intr && int2 == intr && nt1 > 0 && nt2 > 0, 
   Print["interval(pm2-pp1)= ", int1], "interval(pm2-pp1)= --"];

  If[int1 == intr && int2 == intr && nt1 > 0 && nt2 > 0, 
   Print["PrimeQ[(1),(2)]= ", {{PrimeQ[6*nt1 - 1], 
      PrimeQ[6*nt1 + 1]}, {PrimeQ[6*nt2 - 1], PrimeQ[6*nt2 + 1]}}], 
   Print["PrimeQ[(1),(2)]= {{--,--},{--,--}} "]];

  If[int1 == intr && int2 == intr && nt1 > 0 && nt2 > 0, 
   Print["If you want to find the next twin prime, start with n= ", 
    nt1 + 1], 
   Print["If you want to continue, start with n= ", n + 101]], 
  Print["***** ! Please enter a positive integer. *****"]];

"********************************************************";
func[n_] := 
 Module[{dat1, dat2, dat3, dat4}, 
  dat1 = FindInstance[
    6*s1^2 + (6*s1 - 1)*(m1 - 1) == n && 0 < s1 && 0 < m1, {s1, m1}, 
    Integers]; 
  dat2 = FindInstance[
    6*s2^2 + 6*s2 + 1 + (6*s2 + 1)*(m2 - 1) == n && 0 < s2 && 
     0 < m2, {s2, m2}, Integers]; 
  dat3 = FindInstance[
    6*s3^2 - 2*s3 + (6*s3 - 1)*(m3 - 1) == n && 0 < s3 && 0 < m3, {s3,
      m3}, Integers]; 
  dat4 = FindInstance[
    6*s4^2 + 2*s4 + (6*s4 + 1)*(m4 - 1) == n && 0 < s4 && 0 < m4, {s4,
      m4}, Integers]; {dat1, dat2, dat3, dat4}]
"********************************************************";

This is an example where $n=1$ and $r=2$. Since "${\rm interval} $"$=6r-2=10$. The calculation result is as follows.

====== The calculation results are shown below. ======
n= 1
r= 2
Specified interval(6*r-2)= 10
n selected= 3
Twin prime(1)= {17,19}
Twin prime(2)= {29,31}
interval(pm2-pp1)= 10
PrimeQ[(1),(2)]= {{True,True},{True,True}}
If you want to find the next twin prime, start with n= 4

The calculation result shows the input values $n=1$ and $r=2$. It shows that $r=2$ to ${\rm Specified\ interval} \;(6r-2) = 10$. The search starts from $n=1$ and the solution is found with $n\; {\rm selected} = 3$. This shows that the two twin primes obtained as a solution are ${\rm Twin \,prime}\; (1) = \{17,19\}$ and ${\rm Twin \,prime}\; (2) = \{29,31\}$. It is judged by ${\rm PrimeQ}\; [(1), (2)]$ that the four numbers are indeed prime numbers. Finally, it indicates the next $n$ to start when continuing the search. One search interval is in the range of $n$ to ( $n+100$). If no solution is obtained within the interval, $n$ for searching beyond is also displayed here.

If $r=1$ here, "${\rm interval} $" $= 4$. In this case, it will be the same as $" Search \;for \;consecutive \;twin \;primes "$ described in the previous report.

In writing this program, I used ${\rm Module}\; []$ and ${\rm func} [n {\text _}]: =$ for the first time. Thanks to Claudio-san and William-san for teaching us.

The following table shows two calculation examples. ${\rm Table} \,1$ is an example of $r = 1$, ie "${\rm interval} $" $= 6r-2 = 4$, and ${\rm Table} \,2$ is an example of $r = 5$, ie "${\rm interval} $"$ = 6r-2 = 28$. In both cases, the search was started from $n=1$, and $50$ sets of the selected $n$ and the two pairs of twin primes that were the solutions were recorded.

.

$${\rm Table}\;1\;\; r=2 \;{\rm ( Interval}=10 \ )$$ \begin{array}{|c|c|c|} \hline n\;(r=2)& {\rm Twin \ prime\ (1)}&{\rm Twin \ prime \ (2)}\\ \hline 3 & \text{{17,19}} & \text{{29,31}} \\ 5 & \text{{29,31}} & \text{{29,31}}\\ 10 & \text{{59,61}} & \text{{71,73}}\\ 23 & \text{{137,139}} & \text{{149,151}}\\ 30 & \text{{179,181}} & \text{{191,193}}\\ 38 & \text{{227,229}} & \text{{239,241}}\\ 45 & \text{{269,271}} & \text{{281,283}}\\ 70 & \text{{419,421}} & \text{{431,433}}\\ 135 & \text{{809,811}} & \text{{821,823}}\\ 170 & \text{{1019,1021}} & \text{{1031,1033}}\\ 175 & \text{{1049,1051}} & \text{{1061,1063}}\\ 213 & \text{{1277,1279}} & \text{{1289,1291}}\\ 215 & \text{{1289,1291}} & \text{{1301,1303}}\\ 268 & \text{{1607,1609}} & \text{{1619,1621}}\\ 355 & \text{{2129,2131}} & \text{{2141,2143}}\\ 465 & \text{{2789,2791}} & \text{{2801,2803}}\\ 560 & \text{{3359,3361}} & \text{{3371,3373}}\\ 588 & \text{{3527,3529}} & \text{{3539,3541}}\\ 703 & \text{{4217,4219}} & \text{{4229,4231}}\\ 705 & \text{{4229,4231}} & \text{{4241,4243}}\\ 710 & \text{{4259,4261}} & \text{{4271,4273}}\\ 773 & \text{{4637,4639}} & \text{{4649,4651}}\\ 798 & \text{{4787,4789}} & \text{{4799,4801}}\\ 835 & \text{{5009,5011}} & \text{{5021,5023}}\\ 940 & \text{{5639,5641}} & \text{{5651,5653}}\\ 978 & \text{{5867,5869}} & \text{{5879,5881}}\\ 1115 & \text{{6689,6691}} & \text{{6701,6703}}\\ 1130 & \text{{6779,6781}} & \text{{6791,6793}}\\ 1158 & \text{{6947,6949}} & \text{{6959,6961}}\\ 1258 & \text{{7547,7549}} & \text{{7559,7561}}\\ 1370 & \text{{8219,8221}} & \text{{8231,8233}}\\ 1500 & \text{{8999,9001}} & \text{{9011,9013}}\\ 1570 & \text{{9419,9421}} & \text{{9431,9433}}\\ 1843 & \text{{11057,11059}} & \text{{11069,11071}}\\ 1860 & \text{{11159,11161}} & \text{{11171,11173}}\\ 2040 & \text{{12239,12241}} & \text{{12251,12253}}\\ 2280 & \text{{13679,13681}} & \text{{13691,13693}}\\ 2285 & \text{{13709,13711}} & \text{{13721,13723}}\\ 2333 & \text{{13997,13999}} & \text{{14009,14011}}\\ 2425 & \text{{14549,14551}} & \text{{14561,14563}}\\ 2985 & \text{{17909,17911}} & \text{{17921,17923}}\\ 3008 & \text{{18047,18049}} & \text{{18059,18061}}\\ 3020 & \text{{18119,18121}} & \text{{18131,18133}}\\ 3598 & \text{{21587,21589}} & \text{{21599,21601}}\\ 3600 & \text{{21599,21601}} & \text{{21611,21613}}\\ 3838 & \text{{23027,23029}} & \text{{23039,23041}}\\ 4375 & \text{{26249,26251}} & \text{{26261,26263}}\\ 4450 & \text{{26699,26701}} & \text{{26711,26713}}\\ 4480 & \text{{26879,26881}} & \text{{26891,26893}}\\ 4588 & \text{{27527,27529}} & \text{{27539,27541}}\\
\text{Omitted below} & \text{Omitted below} &\text{Omitted below}\\ \hline \end{array}

. $${\rm Table}\;2\;\; r=5 \;{\rm ( Interval}=28 \ )$$ \begin{array}{|c|c|c|} \hline n\;(r=5)& {\rm Twin \ prime\ (1)}&{\rm Twin \ prime \ (2)}\\ \hline 12 & \text{{71,73}} & \text{{101,103}}\\ 18 & \text{{107,109}} & \text{{137,139}}\\ 25 & \text{{149,151}} & \text{{179,181}}\\ 33 & \text{{197,199}} & \text{{227,229}}\\ 40 & \text{{239,241}} & \text{{269,271}}\\ 47 & \text{{281,283}} & \text{{311,313}}\\ 72 & \text{{431,433}} & \text{{461,463}}\\ 95 & \text{{569,571}} & \text{{599,601}}\\ 138 & \text{{827,829}} & \text{{857,859}}\\ 177 & \text{{1061,1063}} & \text{{1091,1093}}\\ 242 & \text{{1451,1453}} & \text{{1481,1483}}\\ 278 & \text{{1667,1669}} & \text{{1697,1699}}\\ 333 & \text{{1997,1999}} & \text{{2027,2029}}\\ 373 & \text{{2237,2239}} & \text{{2267,2269}}\\ 385 & \text{{2309,2311}} & \text{{2339,2341}}\\ 443 & \text{{2657,2659}} & \text{{2687,2689}}\\ 495 & \text{{2969,2971}} & \text{{2999,3001}}\\ 550 & \text{{3299,3301}} & \text{{3329,3331}}\\ 555 & \text{{3329,3331}} & \text{{3359,3361}}\\ 637 & \text{{3821,3823}} & \text{{3851,3853}}\\ 670 & \text{{4019,4021}} & \text{{4049,4051}}\\ 688 & \text{{4127,4129}} & \text{{4157,4159}}\\ 753 & \text{{4517,4519}} & \text{{4547,4549}}\\ 1045 & \text{{6269,6271}} & \text{{6299,6301}}\\ 1110 & \text{{6659,6661}} & \text{{6689,6691}}\\ 1243 & \text{{7457,7459}} & \text{{7487,7489}}\\ 1260 & \text{{7559,7561}} & \text{{7589,7591}}\\ 1433 & \text{{8597,8599}} & \text{{8627,8629}}\\ 1495 & \text{{8969,8971}} & \text{{8999,9001}}\\ 1502 & \text{{9011,9013}} & \text{{9041,9043}}\\ 1668 & \text{{10007,10009}} & \text{{10037,10039}}\\ 1673 & \text{{10037,10039}} & \text{{10067,10069}}\\ 1712 & \text{{10271,10273}} & \text{{10301,10303}}\\ 1717 & \text{{10301,10303}} & \text{{10331,10333}}\\ 1738 & \text{{10427,10429}} & \text{{10457,10459}}\\ 1750 & \text{{10499,10501}} & \text{{10529,10531}}\\ 1810 & \text{{10859,10861}} & \text{{10889,10891}}\\ 1990 & \text{{11939,11941}} & \text{{11969,11971}}\\ 2007 & \text{{12041,12043}} & \text{{12071,12073}}\\ 2317 & \text{{13901,13903}} & \text{{13931,13933}}\\ 2427 & \text{{14561,14563}} & \text{{14591,14593}}\\ 2555 & \text{{15329,15331}} & \text{{15359,15361}}\\ 2898 & \text{{17387,17389}} & \text{{17417,17419}}\\ 2993 & \text{{17957,17959}} & \text{{17987,17989}}\\ 3197 & \text{{19181,19183}} & \text{{19211,19213}}\\ 3327 & \text{{19961,19963}} & \text{{19991,19993}}\\ 3332 & \text{{19991,19993}} & \text{{20021,20023}}\\ 3413 & \text{{20477,20479}} & \text{{20507,20509}}\\ 3453 & \text{{20717,20719}} & \text{{20747,20749}}\\ 3497 & \text{{20981,20983}} & \text{{21011,21013}}\\
\text{Omitted below} & \text{Omitted below} &\text{Omitted below}\\ \hline \end{array}

POSTED BY: Koichi Ohno
2 Replies
Posted 5 years ago

Since it was not displayed correctly, a sentence excluding processing is presented. Please read subscripts by yourself.

-------Correct text

The horizontal axis of this graph is the " interval" (=pm2-pp1) of the twin prime Tp1 and the next twin prime Tp2. The vertical axis is the frequency of occurrence, and the parameter is approximately 61000. What you can see in the graph is the fact that there is a solution only if the " interval" is 4,10,16,22,?. In the case of 6,8,12,14,? there is no solution. I will omit the explanation, but this is because one or both of Tp_2 is not a prime number depending on the condition of equation (1). (the sum of odd and odd numbers is even, multiples of 3 are involved)

POSTED BY: Koichi Ohno
Posted 5 years ago

The text below the graph did not display a few lines correctly, so I'll take this opportunity to show you what I intended.

Why was it displayed correctly in "Post Preview"?

-------Correct text

The horizontal axis of this graph is the "${\rm interval} $" (=$p{m2}-p{p1} $) of the twin prime $Tp_1$ and the next twin prime $Tp_2$. The vertical axis is the frequency of occurrence, and the parameter is approximately 61000. What you can see in the graph is the fact that there is a solution only if the "${\rm interval} $" is $4,10,16,22,?$. In the case of $6,8,12,14,?$ there is no solution. I will omit the explanation, but this is because one or both of $Tp_2$ is not a prime number depending on the condition of equation ( $1$). (the sum of odd and odd numbers is even, multiples of 3 are involved)

POSTED BY: Koichi Ohno
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract