Dear Hirokazu Kobayashi,
After studying the post about the OOP method, I tried use it to solve differential equation, but I met another problem. When I solved a differential equation numerically, I want to export some data about the solution, and I found use the OOP would be slow more than directly use Table[] function, I don't know if I did wrong, the porceding is:
1:
In[1]:= sol =
NDSolve[{y'[x] == Sin[x^2 + 2 x]/(2 Cos[x/2 + 3 x] + 3), y[0] == 0},
y, {x, 0, 500}, MaxSteps -> 10^6, AccuracyGoal -> 30]
Out[1]= {{y -> InterpolatingFunction[{{0., 500.}}, <>]}}
2:use the OOP
LaunchKernels[];
kernelList = ParallelEvaluate[$KernelID];
case[nam_] := Module[{begin, end},
nam[set[{be_, en_}]] := {begin, end} = {be, en};
go[] := Table[{x, y[x] /. sol[[1]]}, {x, begin, end, 0.01}];
]
object = {
Association["name" -> Unique[k], "range" -> {0, 125},
"kernel" -> kernelList[[1]]],
Association["name" -> Unique[k], "range" -> {125, 250},
"kernel" -> kernelList[[2]]],
Association["name" -> Unique[k], "range" -> {250, 375},
"kernel" -> kernelList[[3]]],
Association["name" -> Unique[k], "range" -> {375, 500},
"kernel" -> kernelList[[4]]]
};
Map[ParallelEvaluate[case[#name], #kernel] &, object];
Map[ParallelEvaluate[#name[set[#range]], #kernel] &, object];
3: comparing the time
In[8]:= in1 = SessionTime[]
para1 = ParallelEvaluate[go[]];
SessionTime[] - in1
Out[8]= 406.966900
Out[10]= 50.845088
In[11]:= in2 = SessionTime[]
para2 = Table[{x, y[x] /. sol[[1]]}, {x, 0, 500, 0.01}];
SessionTime[] - in2
Out[11]= 457.863461
Out[13]= 0.108939
I don't know if I used the method incorrectly? If the OOP can solve the problem that will be a great improvment for my work! Thanks!