Hello Community,
I tried to formulate an expression that contains a sum over KroneckerDeltafunctions.
te[x] + v[x] \[Tau] \!\(
\*UnderoverscriptBox[\(\[Sum]\), \(n = 0\), \(N\)]\(KroneckerDelta[t,
n\ \[Tau]]\)\),
N > 0 && t >= 0 & \[Tau] >= 0 && {n, N} \[Element]
Integers && {x , t, \[Tau]} \[Element] Reals]
Using Simplify and FullSimplify with the appropiate conditions on the Integer and Real variables I get the following result:
t1 = FullSimplify[ te[x] + v[x] \[Tau] \!\(
\*UnderoverscriptBox[\(\[Sum]\), \(n = 0\), \(N\)]\(KroneckerDelta[t,
n\ \[Tau]]\)\),
N > 0 && t >= 0 & \[Tau] >= 0 && {n, N} \[Element]
Integers && {x , t, \[Tau]} \[Element] Reals]
Apparently Mathematica has not considered all of the constraints like N >0 etc. Any ideas on how to improve the output of this calculation?