Message Boards Message Boards

COVID-19 - R0 and Herd Immunity - are we getting closer?

Posted 5 years ago
Attachments:
POSTED BY: Jan Brugard
10 Replies

This post has been listed in the main resource-hub COVID-19 thread: https://wolfr.am/coronavirus in the section Computational Publications. Pleasee feel free to add your own comment on that discussion pointing to this post ( https://community.wolfram.com/groups/-/m/t/1911422 ) so many more interested readers will become aware of your excellent work. Thank you for your effort!

POSTED BY: EDITORIAL BOARD

enter image description here -- you have earned Featured Contributor Badge enter image description here

Your exceptional post has been selected for our editorial column Staff Picks http://wolfr.am/StaffPicks and Your Profile is now distinguished by a Featured Contributor Badge and is displayed on the Featured Contributor Board. Thank you!

POSTED BY: EDITORIAL BOARD

Thanks.

I assume that you get immune after recovery as most data indicates that this far.

I assume that I can neglect the deaths as these are such a small proportion of the total population, but in a more detailed model this should be included (coming soon hopefully).

Whether different countries have a strategy of herd immunity or not is more of a communication issue than something that actually differs between countries I would say. The strategy that everyone has is to keep the growth so small that their Healthcare system can cope with it while at the same time going fast enough so society does not implode.

As heard immunity is so far away and the path is scary, most countries choose not to comunicate that as a strategy. Instead they focus on the current part of the strategy, namely to minimize the growth rate.

As it is a pandemic, every country would need to reach herd immunity to get things into balance. Some of that immunity could come through vaccines, but it will take quite some time before we have one.

POSTED BY: Jan Brugard

Well put, Jan.

When we come out of this if a few months (hopefully only a few), a large portion of the population will still be susceptible. I worry that new small outbreaks could spread rapidly, giving a so-called rebound. This behavior is not uncommon in dynamical system models such as the ones used for infectious diseases, and there is some evidence that real biological systems behave this way. Moreover, as Dr. Fauci (US NIH) said earlier this week, the pandemic will spread into the southern hemisphere, which is just entering its winter season, and from there it could easily reenter the northern hemisphere later this year or next where there will be lots of susceptible people, unless a vaccine can be discovered and delivered.

POSTED BY: Robert Nachbar

Could not agree more. This leads one to think that we may need to work on general better practices e.g. in medicine considering increasing use of telehealth under even "normal" circumstances (likely to help with minimising all nosocomial infections) and/or that we will have to have repeated periods of increasing social distancing until a vaccine is available.

Posted 5 years ago

Another possibility is that COVID has already been spreading for many months undetected and there is already some established herd immunity. There are claims that there were already spikes in flu-like deaths back in December, for example. Do the COVID tests detect whether one has ever been exposed, or just whether one is currently infectious?

POSTED BY: Bernard Gress

Current tests are PCR-based, detect current infection (or at least presence of virus RNA, ongoing debate about significance of positivity for infectivity after resolution of symptoms) with SARS-CoV-2 aka virus causing COVID-19, they would not be (true) positive unless someone is actively infected. Tests to detect prior infection with this virus are being developed but not yet available, they are the serologic assays you hear of. Not fully uptodate but good intro here.

Yes, and if that's right then it would be great. Because then the fatality must obviously be a lot lower than currently believed, and we would be much closer to immunity than we believe.

I highly doubt this though.

POSTED BY: Jan Brugard
Posted 5 years ago

I agree with your statements here. Especially with regards to how the communication strategy (especially in the USA) is focused on the short-term mitigation plan, with no articulation of the higher level COVID-19 end-game strategy.

The Chinese model seems impossible for the USA, but the 60% infection for herd immunity is unacceptable. Is seems we are haphazardly stumbling toward a hybrid end game, with a combination of non-trivial number of survivors (~10%?) with immunity, a calibrated relaxing of social distancing (hopefully based on data), desperate short-term increase in hospital capacity, desperate attempts at improving treatment, and slow but massive gearing up test infrastructure.

It seems like what we really need is an R0 model that shows the effect of relaxing social distancing on virus survivors with immunity, relaxing restrictions on some subset of businesses, the effect of certain countermeasures like masks, etc.

Since factors tend to average out over large populations, it should be possible to make a model for R0 based on a few key factors. For example, % of people still coming to work, or % of people still taking public transportation, % of people with access to testing, etc. I suspect that a lot of things people think are important, like wearing masks and wiping down your Amazon deliveries, are basically irrelevant. I would be very interested in research to better model R0 and establish a data-based pareto of factors.

POSTED BY: Josh O

Very nice post; most importantly, you show the effect of social distancing on disease impact. A few comments nonetheless: - You assume that "Most people that get infected will recover and get immune." Although it's likely the case based on analogy to similar viruses (the podcast This Week in Virology has had very good discussions about this), I think not only do we just don't know now, but there's also at least suspicion that people that did test negative on PCR could convert back to positive (unclear whether that's a true reconversion or if it's due to testing limitations) - see e.g. here). This may be nevertheless very relevant for modelling, as it could imply that SIR is not adequate. Practically speaking, this means that we don't have a good framework as to isolation of subjects that had tested positive but clinically recovered (if you think particularly about the case of healthcare workers, that could easily make them super-spreaders -using word non-technically). - Another thing is that infection removes people from the susceptible pool in two ways - by recovering and becoming immune or by dying. The test of herd immunity as a national policy for contagion management was abandoned by the UK and remains pursued by the Netherlands - I'm very worried, however, that it is likely to become a very costly strategy in terms of lives lost that could have been spared by using social distancing and/or contact tracing and isolation instead. - Finally for your positive thought "if we are lucky though there are a lot of unknown cases," I think there's starting to be accumulating evidence that that's likely the case (see e.g. here and there-they're reporting about half the cases were entirely asymptomatic).

Thanks again for a nice post making visible the effect of the public health measures!

F.

Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract