I believe the problem here is that when the angle is held at 0, ParametricPlot draws the offending line segment as part of the boundary.
First, a graph just showing the segment with the angle held at 0.
p = 0;
noAngleDep =
ParametricPlot[{0.2178710789897841 -
0.9719522806619472 ss Cos[p]^3 + 0.23517815399402978 ss Sin[p]^3,
0.025022182511575484 - 0.23517815399402978 ss Cos[p]^3 -
0.9719522806619472 ss Sin[p]^3}, {ss, 0, 0.281546015800896},
PlotStyle -> Green ]
Then your code:
angleDep =
ParametricPlot[{0.2178710789897841` -
0.9719522806619472` ss Cos[p]^3 +
0.23517815399402978` ss Sin[p]^3,
0.025022182511575484` - 0.23517815399402978` ss Cos[p]^3 -
0.9719522806619472` ss Sin[p]^3}, {p, 0, 2 \[Pi]}, {ss, 0,
0.281546015800896`}, PlotStyle -> Red]
And one on top of the other:
Show[{angleDep, noAngleDep}]
I believe you can set the color and opacity of the region this way:
angleDep =
ParametricPlot[{0.2178710789897841` -
0.9719522806619472` ss Cos[p]^3 +
0.23517815399402978` ss Sin[p]^3,
0.025022182511575484` - 0.23517815399402978` ss Cos[p]^3 -
0.9719522806619472` ss Sin[p]^3}, {p, 0, 2 \[Pi]}, {ss, 0,
0.281546015800896`}, PlotStyle -> {Red, Opacity[1]}]
and set the color of the "no angle dependence" plot to the same color:
p = 0;
noAngleDep =
ParametricPlot[{0.2178710789897841 -
0.9719522806619472 ss Cos[p]^3 + 0.23517815399402978 ss Sin[p]^3,
0.025022182511575484 - 0.23517815399402978 ss Cos[p]^3 -
0.9719522806619472 ss Sin[p]^3}, {ss, 0, 0.281546015800896},
PlotStyle -> Red]
And then just show them together, and you should be set:
Show[{angleDep, noAngleDep}]