WolframAlpha.com
WolframCloud.com
All Sites & Public Resources...
Products & Services
Wolfram|One
Mathematica
Wolfram|Alpha Notebook Edition
Programming Lab
Finance Platform
SystemModeler
Wolfram Player
Wolfram Engine
WolframScript
Enterprise Private Cloud
Enterprise Mathematica
Wolfram|Alpha Appliance
Enterprise Solutions
Corporate Consulting
Technical Consulting
Wolfram|Alpha Business Solutions
Resource System
Data Repository
Neural Net Repository
Function Repository
Wolfram|Alpha
Wolfram|Alpha Pro
Problem Generator
API
Data Drop
Products for Education
Mobile Apps
Wolfram Player
Wolfram Cloud App
Wolfram|Alpha for Mobile
Wolfram|Alpha-Powered Apps
Services
Paid Project Support
Wolfram U
Summer Programs
All Products & Services »
Technologies
Wolfram Language
Revolutionary knowledge-based programming language.
Wolfram Cloud
Central infrastructure for Wolfram's cloud products & services.
Wolfram Science
Technology-enabling science of the computational universe.
Wolfram Notebooks
The preeminent environment for any technical workflows.
Wolfram Engine
Software engine implementing the Wolfram Language.
Wolfram Natural Language Understanding System
Knowledge-based broadly deployed natural language.
Wolfram Data Framework
Semantic framework for real-world data.
Wolfram Universal Deployment System
Instant deployment across cloud, desktop, mobile, and more.
Wolfram Knowledgebase
Curated computable knowledge powering Wolfram|Alpha.
All Technologies »
Solutions
Engineering, R&D
Aerospace & Defense
Chemical Engineering
Control Systems
Electrical Engineering
Image Processing
Industrial Engineering
Mechanical Engineering
Operations Research
More...
Finance, Statistics & Business Analysis
Actuarial Sciences
Bioinformatics
Data Science
Econometrics
Financial Risk Management
Statistics
More...
Education
All Solutions for Education
Trends
Machine Learning
Multiparadigm Data Science
Internet of Things
High-Performance Computing
Hackathons
Software & Web
Software Development
Authoring & Publishing
Interface Development
Web Development
Sciences
Astronomy
Biology
Chemistry
More...
All Solutions »
Learning & Support
Learning
Wolfram Language Documentation
Fast Introduction for Programmers
Wolfram U
Videos & Screencasts
Wolfram Language Introductory Book
Webinars & Training
Summer Programs
Books
Need Help?
Support FAQ
Wolfram Community
Contact Support
Premium Support
Paid Project Support
Technical Consulting
All Learning & Support »
Company
About
Company Background
Wolfram Blog
Events
Contact Us
Work with Us
Careers at Wolfram
Internships
Other Wolfram Language Jobs
Initiatives
Wolfram Foundation
MathWorld
Computer-Based Math
A New Kind of Science
Wolfram Technology for Hackathons
Student Ambassador Program
Wolfram for Startups
Demonstrations Project
Wolfram Innovator Awards
Wolfram + Raspberry Pi
Summer Programs
More...
All Company »
Search
WOLFRAM COMMUNITY
Connect with users of Wolfram technologies to learn, solve problems and share ideas
Join
Sign In
Dashboard
Groups
People
Message Boards
Answer
(
Unmark
)
Mark as an Answer
GROUPS:
Staff Picks
Biological Sciences
Computer Science
Data Science
Medical Sciences
Mathematica
Graphics and Visualization
Wolfram Language
Machine Learning
Events & Media
3
Anton Antonov
Apple mobility trends data visualization
Anton Antonov, Accendo Data LLC
Posted
1 year ago
2253 Views
|
2 Replies
|
3 Total Likes
Follow this post
|
MODERATOR NOTE: coronavirus resources & updates:
https://wolfr.am/coronavirus
Apple mobility trends data visualization
Version 0.9
Anton Antonov
MathematicaForPrediction at WordPress
SystemModeling at GitHub
April 2020
May 2020
December 2020
Introduction
I this notebook we ingest and visualize the mobility trends data provided by Apple, [APPL1].
We take the following steps:
1
.
Download the data
2
.
Import the data and summarise it
3
.
Transform the data into long form
4
.
Partition the data into subsets that correspond to combinations of geographical regions and transportation types
5
.
Make contingency matrices and corresponding heat-map plots
6
.
Make nearest neighbors graphs over the contingency matrices and plot communities
7
.
Plot the corresponding time series
Data description
From Apple’s page
https://www.apple.com/covid19/mobility
About This Data
The CSV file and charts on this site show a relative volume of directions requests per country/region or city compared to a baseline volume on January 13th, 2020.
We define our day as midnight-to-midnight, Pacific time. Cities represent usage in greater metropolitan areas and are stably defined during this period. In many countries/regions and cities, relative volume has increased since January 13th, consistent with normal, seasonal usage of Apple Maps. Day of week effects are important to normalize as you use this data.
Data that is sent from users’ devices to the Maps service is associated with random, rotating identifiers so Apple doesn’t have a profile of your movements and searches. Apple Maps has no demographic information about our users, so we can’t make any statements about the representativeness of our usage against the overall population.
Observations
The observations listed in this subsection are also placed under the relevant statistics in the following sections and indicated with “
Observation
”.
◼
The directions request volumes reference date for normalization is 2020-01-13 : all the values in that column are
1
0
0
.
◼
From the community clusters of the nearest neighbor graphs (derived from the time series of the normalized driving directions requests volume) we see that countries and cities are clustered in expected ways. For example, in the community graph plot corresponding to “{city, driving}” the cities Oslo, Copenhagen, Helsinki, Stockholm, and Zurich are placed in the same cluster. In the graphs corresponding to “{city, transit}” and “{city, walking}” the Japanese cities Tokyo, Osaka, Nagoya, and Fukuoka are clustered together.
◼
In the time series plots the Sundays are indicated with orange dashed lines. We can see that from Monday to Thursday people are more familiar with their trips than say on Fridays and Saturdays. We can also see that on Sundays people (on average) are more familiar with their trips or simply travel less.
Load packages
I
n
[
]
:
=
I
m
p
o
r
t
[
"
h
t
t
p
s
:
/
/
r
a
w
.
g
i
t
h
u
b
u
s
e
r
c
o
n
t
e
n
t
.
c
o
m
/
a
n
t
o
n
o
n
c
u
b
e
/
M
a
t
h
e
m
a
t
i
c
a
F
o
r
P
r
e
d
i
c
t
i
o
n
/
m
a
s
t
e
r
/
D
a
t
a
R
e
s
h
a
p
e
.
m
"
]
I
m
p
o
r
t
[
"
h
t
t
p
s
:
/
/
r
a
w
.
g
i
t
h
u
b
u
s
e
r
c
o
n
t
e
n
t
.
c
o
m
/
a
n
t
o
n
o
n
c
u
b
e
/
M
a
t
h
e
m
a
t
i
c
a
F
o
r
P
r
e
d
i
c
t
i
o
n
/
m
a
s
t
e
r
/
M
i
s
c
/
H
e
a
t
m
a
p
P
l
o
t
.
m
"
]
Data ingestion
Apple mobile data was provided in this WWW page:
https://www.apple.com/covid19/mobility
, [APPL1]. (The data has to be download from that web page -- there is an “agreement to terms”, etc.)
I
n
[
]
:
=
d
s
A
p
p
l
e
M
o
b
i
l
i
t
y
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
I
m
p
o
r
t
C
S
V
T
o
D
a
t
a
s
e
t
"
]
[
"
~
/
D
o
w
n
l
o
a
d
s
/
a
p
p
l
e
m
o
b
i
l
i
t
y
t
r
e
n
d
s
-
2
0
2
1
-
0
1
-
1
5
.
c
s
v
"
]
O
u
t
[
]
=
g
e
o
_
t
y
p
e
r
e
g
i
o
n
t
r
a
n
s
p
o
r
t
a
t
i
o
n
_
t
y
p
e
a
l
t
e
r
n
a
t
i
v
e
_
n
a
m
e
s
u
b
-
r
e
g
i
o
n
c
o
u
n
t
r
y
2
0
2
0
-
0
1
-
1
3
2
0
2
0
-
0
1
-
1
4
2
0
2
0
-
0
1
-
1
5
2
0
2
0
-
0
1
-
1
6
c
o
u
n
t
r
y
/
r
e
g
i
o
n
A
l
b
a
n
i
a
d
r
i
v
i
n
g
1
0
0
.
0
9
5
.
3
1
0
1
.
4
3
9
7
.
2
c
o
u
n
t
r
y
/
r
e
g
i
o
n
A
l
b
a
n
i
a
w
a
l
k
i
n
g
1
0
0
.
0
1
0
0
.
6
8
9
8
.
9
3
9
8
.
4
6
c
o
u
n
t
r
y
/
r
e
g
i
o
n
A
r
g
e
n
t
i
n
a
d
r
i
v
i
n
g
1
0
0
.
0
9
7
.
0
7
1
0
2
.
4
5
1
1
1
.
2
1
c
o
u
n
t
r
y
/
r
e
g
i
o
n
A
r
g
e
n
t
i
n
a
w
a
l
k
i
n
g
1
0
0
.
0
9
5
.
1
1
1
0
1
.
3
7
1
1
2
.
6
7
c
o
u
n
t
r
y
/
r
e
g
i
o
n
A
u
s
t
r
a
l
i
a
d
r
i
v
i
n
g
A
U
1
0
0
.
0
1
0
2
.
9
8
1
0
4
.
2
1
1
0
8
.
6
3
c
o
u
n
t
r
y
/
r
e
g
i
o
n
A
u
s
t
r
a
l
i
a
t
r
a
n
s
i
t
A
U
1
0
0
.
0
1
0
1
.
7
8
1
0
0
.
6
4
9
9
.
5
8
c
o
u
n
t
r
y
/
r
e
g
i
o
n
A
u
s
t
r
a
l
i
a
w
a
l
k
i
n
g
A
U
1
0
0
.
0
1
0
1
.
3
1
1
0
1
.
8
2
1
0
4
.
5
2
c
o
u
n
t
r
y
/
r
e
g
i
o
n
A
u
s
t
r
i
a
d
r
i
v
i
n
g
Ö
s
t
e
r
r
e
i
c
h
1
0
0
.
0
1
0
1
.
1
4
1
0
4
.
2
4
1
1
2
.
2
1
c
o
u
n
t
r
y
/
r
e
g
i
o
n
A
u
s
t
r
i
a
w
a
l
k
i
n
g
Ö
s
t
e
r
r
e
i
c
h
1
0
0
.
0
1
0
1
.
5
5
1
0
5
.
5
9
1
1
2
.
2
4
c
o
u
n
t
r
y
/
r
e
g
i
o
n
B
e
l
g
i
u
m
d
r
i
v
i
n
g
B
e
l
g
i
ë
|
B
e
l
g
i
q
u
e
1
0
0
.
0
1
0
1
.
1
9
1
0
7
.
4
9
1
0
7
.
6
7
c
o
u
n
t
r
y
/
r
e
g
i
o
n
B
e
l
g
i
u
m
t
r
a
n
s
i
t
B
e
l
g
i
ë
|
B
e
l
g
i
q
u
e
1
0
0
.
0
9
8
.
6
7
1
0
5
.
0
1
1
0
5
.
8
7
c
o
u
n
t
r
y
/
r
e
g
i
o
n
B
e
l
g
i
u
m
w
a
l
k
i
n
g
B
e
l
g
i
ë
|
B
e
l
g
i
q
u
e
1
0
0
.
0
1
0
1
.
4
6
1
1
0
.
4
4
1
1
8
.
8
6
c
o
u
n
t
r
y
/
r
e
g
i
o
n
B
r
a
z
i
l
d
r
i
v
i
n
g
B
r
a
s
i
l
1
0
0
.
0
9
9
.
7
1
1
0
0
.
9
1
0
1
.
8
8
c
o
u
n
t
r
y
/
r
e
g
i
o
n
B
r
a
z
i
l
t
r
a
n
s
i
t
B
r
a
s
i
l
1
0
0
.
0
1
0
2
.
4
5
1
0
4
.
2
8
1
0
0
.
2
c
o
u
n
t
r
y
/
r
e
g
i
o
n
B
r
a
z
i
l
w
a
l
k
i
n
g
B
r
a
s
i
l
1
0
0
.
0
1
0
6
.
3
1
0
4
.
7
5
9
9
.
0
5
c
o
u
n
t
r
y
/
r
e
g
i
o
n
B
u
l
g
a
r
i
a
d
r
i
v
i
n
g
Б
ъ
л
г
а
р
и
я
1
0
0
.
0
1
0
2
.
5
6
1
0
4
.
7
3
1
0
4
.
3
5
c
o
u
n
t
r
y
/
r
e
g
i
o
n
B
u
l
g
a
r
i
a
w
a
l
k
i
n
g
Б
ъ
л
г
а
р
и
я
1
0
0
.
0
1
0
1
.
9
9
9
.
6
1
1
0
0
.
0
6
c
o
u
n
t
r
y
/
r
e
g
i
o
n
C
a
m
b
o
d
i
a
d
r
i
v
i
n
g
ព្
រះ
រា
ជា
ណា
ច
ក្
រ
ក
ម្
ពុ
ជា
1
0
0
.
0
1
0
0
.
7
5
9
9
.
3
3
9
6
.
0
c
o
u
n
t
r
y
/
r
e
g
i
o
n
C
a
m
b
o
d
i
a
w
a
l
k
i
n
g
ព្
រះ
រា
ជា
ណា
ច
ក្
រ
ក
ម្
ពុ
ជា
1
0
0
.
0
9
8
.
0
6
9
9
.
7
9
8
.
0
c
o
u
n
t
r
y
/
r
e
g
i
o
n
C
a
n
a
d
a
d
r
i
v
i
n
g
1
0
0
.
0
1
0
2
.
9
1
9
9
.
7
4
1
0
5
.
1
7
r
o
w
s
1
–
2
0
o
f
4
6
9
1
c
o
l
u
m
n
s
1
–
1
0
o
f
3
7
5
D
a
t
a
n
o
t
i
n
n
o
t
e
b
o
o
k
;
S
t
o
r
e
n
o
w
»
Observation:
The directions requests volumes reference date for normalization is 2020-01-13 : all the values in that column are
1
0
0
.
Data dimensions:
I
n
[
]
:
=
D
i
m
e
n
s
i
o
n
s
[
d
s
A
p
p
l
e
M
o
b
i
l
i
t
y
]
O
u
t
[
]
=
{
4
6
9
1
,
3
7
5
}
Data summary:
I
n
[
]
:
=
M
a
g
n
i
f
y
[
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
R
e
c
o
r
d
s
S
u
m
m
a
r
y
"
]
[
d
s
A
p
p
l
e
M
o
b
i
l
i
t
y
]
,
0
.
6
]
O
u
t
[
]
=
Number of unique “country/region” values:
I
n
[
]
:
=
L
e
n
g
t
h
[
U
n
i
o
n
[
N
o
r
m
a
l
[
d
s
A
p
p
l
e
M
o
b
i
l
i
t
y
[
S
e
l
e
c
t
[
#
[
"
g
e
o
_
t
y
p
e
"
]
=
=
"
c
o
u
n
t
r
y
/
r
e
g
i
o
n
"
&
]
,
"
r
e
g
i
o
n
"
]
]
]
]
O
u
t
[
]
=
6
3
Number of unique “city” values:
I
n
[
]
:
=
L
e
n
g
t
h
[
U
n
i
o
n
[
N
o
r
m
a
l
[
d
s
A
p
p
l
e
M
o
b
i
l
i
t
y
[
S
e
l
e
c
t
[
#
[
"
g
e
o
_
t
y
p
e
"
]
=
=
"
c
i
t
y
"
&
]
,
"
r
e
g
i
o
n
"
]
]
]
]
O
u
t
[
]
=
2
9
5
All unique geo types:
I
n
[
]
:
=
l
s
G
e
o
T
y
p
e
s
=
U
n
i
o
n
[
N
o
r
m
a
l
[
d
s
A
p
p
l
e
M
o
b
i
l
i
t
y
[
A
l
l
,
"
g
e
o
_
t
y
p
e
"
]
]
]
O
u
t
[
]
=
{
c
i
t
y
,
c
o
u
n
t
r
y
/
r
e
g
i
o
n
,
c
o
u
n
t
y
,
s
u
b
-
r
e
g
i
o
n
}
All unique transportation types:
I
n
[
]
:
=
l
s
T
r
a
n
s
p
o
r
t
a
t
i
o
n
T
y
p
e
s
=
U
n
i
o
n
[
N
o
r
m
a
l
[
d
s
A
p
p
l
e
M
o
b
i
l
i
t
y
[
A
l
l
,
"
t
r
a
n
s
p
o
r
t
a
t
i
o
n
_
t
y
p
e
"
]
]
]
O
u
t
[
]
=
{
d
r
i
v
i
n
g
,
t
r
a
n
s
i
t
,
w
a
l
k
i
n
g
}
Data transformation
It is better to have the data in
long form (narrow form)
. For that I am using the package
"DataReshape.m"
, [AAp1].
I
n
[
]
:
=
(
*
l
s
I
D
C
o
l
u
m
n
N
a
m
e
s
=
{
"
g
e
o
_
t
y
p
e
"
,
"
r
e
g
i
o
n
"
,
"
t
r
a
n
s
p
o
r
t
a
t
i
o
n
_
t
y
p
e
"
}
;
*
)
(
*
F
o
r
t
h
e
i
n
i
t
i
a
l
d
a
t
a
s
e
t
o
f
A
p
p
l
e
'
s
m
o
b
i
l
i
t
y
d
a
t
a
.
*
)
l
s
I
D
C
o
l
u
m
n
N
a
m
e
s
=
{
"
g
e
o
_
t
y
p
e
"
,
"
r
e
g
i
o
n
"
,
"
t
r
a
n
s
p
o
r
t
a
t
i
o
n
_
t
y
p
e
"
,
"
a
l
t
e
r
n
a
t
i
v
e
_
n
a
m
e
"
,
"
s
u
b
-
r
e
g
i
o
n
"
,
"
c
o
u
n
t
r
y
"
}
;
d
s
A
p
p
l
e
M
o
b
i
l
i
t
y
L
o
n
g
F
o
r
m
=
T
o
L
o
n
g
F
o
r
m
[
d
s
A
p
p
l
e
M
o
b
i
l
i
t
y
,
l
s
I
D
C
o
l
u
m
n
N
a
m
e
s
,
C
o
m
p
l
e
m
e
n
t
[
K
e
y
s
[
d
s
A
p
p
l
e
M
o
b
i
l
i
t
y
〚
1
〛
]
,
l
s
I
D
C
o
l
u
m
n
N
a
m
e
s
]
]
;
D
i
m
e
n
s
i
o
n
s
[
d
s
A
p
p
l
e
M
o
b
i
l
i
t
y
L
o
n
g
F
o
r
m
]
O
u
t
[
]
=
{
1
7
3
0
9
7
9
,
8
}
Remove the rows with “empty” values:
I
n
[
]
:
=
d
s
A
p
p
l
e
M
o
b
i
l
i
t
y
L
o
n
g
F
o
r
m
=
d
s
A
p
p
l
e
M
o
b
i
l
i
t
y
L
o
n
g
F
o
r
m
[
S
e
l
e
c
t
[
#
V
a
l
u
e
≠
"
"
&
]
]
;
D
i
m
e
n
s
i
o
n
s
[
d
s
A
p
p
l
e
M
o
b
i
l
i
t
y
L
o
n
g
F
o
r
m
]
O
u
t
[
]
=
{
1
7
0
9
4
1
6
,
8
}
Rename the column “Variable” to “Date” and add a related “DateObject” column:
I
n
[
]
:
=
A
b
s
o
l
u
t
e
T
i
m
i
n
g
[
d
s
A
p
p
l
e
M
o
b
i
l
i
t
y
L
o
n
g
F
o
r
m
=
d
s
A
p
p
l
e
M
o
b
i
l
i
t
y
L
o
n
g
F
o
r
m
[
A
l
l
,
J
o
i
n
[
K
e
y
D
r
o
p
[
#
,
"
V
a
r
i
a
b
l
e
"
]
,
<
|
"
D
a
t
e
"
#
V
a
r
i
a
b
l
e
,
"
D
a
t
e
O
b
j
e
c
t
"
D
a
t
e
O
b
j
e
c
t
[
#
V
a
r
i
a
b
l
e
]
|
>
]
&
]
;
]
O
u
t
[
]
=
{
7
1
4
.
0
6
2
,
N
u
l
l
}
Add “day name” (“day of the week”) field:
I
n
[
]
:
=
A
b
s
o
l
u
t
e
T
i
m
i
n
g
[
d
s
A
p
p
l
e
M
o
b
i
l
i
t
y
L
o
n
g
F
o
r
m
=
d
s
A
p
p
l
e
M
o
b
i
l
i
t
y
L
o
n
g
F
o
r
m
[
A
l
l
,
J
o
i
n
[
#
,
<
|
"
D
a
y
N
a
m
e
"
-
>
D
a
t
e
S
t
r
i
n
g
[
#
D
a
t
e
O
b
j
e
c
t
,
{
"
D
a
y
N
a
m
e
"
}
]
|
>
]
&
]
;
]
O
u
t
[
]
=
{
4
9
8
.
0
2
6
,
N
u
l
l
}
Here is sample of the transformed data:
I
n
[
]
:
=
S
e
e
d
R
a
n
d
o
m
[
3
2
3
2
]
;
R
a
n
d
o
m
S
a
m
p
l
e
[
d
s
A
p
p
l
e
M
o
b
i
l
i
t
y
L
o
n
g
F
o
r
m
,
1
2
]
O
u
t
[
]
=
g
e
o
_
t
y
p
e
r
e
g
i
o
n
t
r
a
n
s
p
o
r
t
a
t
i
o
n
_
t
y
p
e
a
l
t
e
r
n
a
t
i
v
e
_
n
a
m
e
s
u
b
-
r
e
g
i
o
n
c
o
u
n
t
r
y
V
a
l
u
e
D
a
t
e
D
a
t
e
O
b
j
e
c
t
D
a
y
N
a
m
e
c
o
u
n
t
y
C
o
l
b
e
r
t
C
o
u
n
t
y
d
r
i
v
i
n
g
A
l
a
b
a
m
a
U
n
i
t
e
d
S
t
a
t
e
s
1
6
2
.
3
2
0
2
0
-
0
6
-
2
3
T
u
e
2
3
J
u
n
2
0
2
0
T
u
e
s
d
a
y
c
o
u
n
t
y
W
e
l
d
C
o
u
n
t
y
w
a
l
k
i
n
g
C
o
l
o
r
a
d
o
U
n
i
t
e
d
S
t
a
t
e
s
1
3
1
.
1
4
2
0
2
1
-
0
1
-
1
4
T
h
u
1
4
J
a
n
2
0
2
1
T
h
u
r
s
d
a
y
s
u
b
-
r
e
g
i
o
n
C
a
n
t
o
n
o
f
B
a
s
e
l
-
S
t
a
d
t
d
r
i
v
i
n
g
K
a
n
t
o
n
B
a
s
e
l
-
S
t
a
d
t
|
C
a
n
t
o
n
d
e
B
â
l
e
-
V
i
l
l
e
S
w
i
t
z
e
r
l
a
n
d
5
5
.
7
2
2
0
2
0
-
0
3
-
1
7
T
u
e
1
7
M
a
r
2
0
2
0
T
u
e
s
d
a
y
c
i
t
y
O
r
l
a
n
d
o
d
r
i
v
i
n
g
F
l
o
r
i
d
a
U
n
i
t
e
d
S
t
a
t
e
s
1
1
8
.
0
9
2
0
2
0
-
0
2
-
2
6
W
e
d
2
6
F
e
b
2
0
2
0
W
e
d
n
e
s
d
a
y
c
o
u
n
t
y
S
u
f
f
o
l
k
C
o
u
n
t
y
d
r
i
v
i
n
g
N
e
w
Y
o
r
k
U
n
i
t
e
d
S
t
a
t
e
s
1
1
8
.
0
4
2
0
2
0
-
1
0
-
2
9
T
h
u
2
9
O
c
t
2
0
2
0
T
h
u
r
s
d
a
y
c
o
u
n
t
y
A
g
u
a
d
i
l
l
a
M
u
n
i
c
i
p
i
o
d
r
i
v
i
n
g
P
u
e
r
t
o
R
i
c
o
U
n
i
t
e
d
S
t
a
t
e
s
3
4
.
1
1
2
0
2
0
-
0
5
-
0
3
S
u
n
3
M
a
y
2
0
2
0
S
u
n
d
a
y
c
o
u
n
t
y
S
u
f
f
o
l
k
C
o
u
n
t
y
d
r
i
v
i
n
g
M
a
s
s
a
c
h
u
s
e
t
t
s
U
n
i
t
e
d
S
t
a
t
e
s
7
5
.
8
2
2
0
2
0
-
0
6
-
1
1
T
h
u
1
1
J
u
n
2
0
2
0
T
h
u
r
s
d
a
y
s
u
b
-
r
e
g
i
o
n
M
a
z
o
v
i
a
P
r
o
v
i
n
c
e
w
a
l
k
i
n
g
W
o
j
e
w
ó
d
z
t
w
o
M
a
z
o
w
i
e
c
k
i
e
P
o
l
a
n
d
4
9
.
6
5
2
0
2
0
-
0
5
-
0
4
M
o
n
4
M
a
y
2
0
2
0
M
o
n
d
a
y
c
i
t
y
C
i
n
c
i
n
n
a
t
i
d
r
i
v
i
n
g
O
h
i
o
U
n
i
t
e
d
S
t
a
t
e
s
1
0
8
.
9
5
2
0
2
0
-
1
0
-
0
4
S
u
n
4
O
c
t
2
0
2
0
S
u
n
d
a
y
c
o
u
n
t
y
B
u
l
l
o
c
h
C
o
u
n
t
y
w
a
l
k
i
n
g
G
e
o
r
g
i
a
U
n
i
t
e
d
S
t
a
t
e
s
6
8
.
8
8
2
0
2
0
-
1
0
-
1
8
S
u
n
1
8
O
c
t
2
0
2
0
S
u
n
d
a
y
c
o
u
n
t
y
B
l
a
i
n
e
C
o
u
n
t
y
d
r
i
v
i
n
g
O
k
l
a
h
o
m
a
U
n
i
t
e
d
S
t
a
t
e
s
7
9
.
4
4
2
0
2
0
-
0
3
-
1
7
T
u
e
1
7
M
a
r
2
0
2
0
T
u
e
s
d
a
y
c
i
t
y
O
k
a
y
a
m
a
d
r
i
v
i
n
g
岡
山
市
O
k
a
y
a
m
a
P
r
e
f
e
c
t
u
r
e
J
a
p
a
n
1
3
9
.
2
6
2
0
2
0
-
0
2
-
0
7
F
r
i
7
F
e
b
2
0
2
0
F
r
i
d
a
y
Here is summary:
I
n
[
]
:
=
R
e
s
o
u
r
c
e
F
u
n
c
t
i
o
n
[
"
R
e
c
o
r
d
s
S
u
m
m
a
r
y
"
]
[
d
s
A
p
p
l
e
M
o
b
i
l
i
t
y
L
o
n
g
F
o
r
m
]
O
u
t
[
]
=
1
g
e
o
_
t
y
p
e
c
o
u
n
t
y
9
6
9
2
4
2
s
u
b
-
r
e
g
i
o
n
3
9
4
0
8
5
c
i
t
y
2
8
9
9
3
8
c
o
u
n
t
r
y
/
r
e
g
i
o
n
5
6
1
5
1
,
2
r
e
g
i
o
n
W
a
s
h
i
n
g
t
o
n
C
o
u
n
t
y
9
9
1
9
J
e
f
f
e
r
s
o
n
C
o
u
n
t
y
9
1
8
7
M
o
n
t
g
o
m
e
r
y
C
o
u
n
t
y
8
8
2
6
F
r
a
n
k
l
i
n
C
o
u
n
t
y
8
0
7
8
M
a
d
i
s
o
n
C
o
u
n
t
y
7
7
1
3
J
a
c
k
s
o
n
C
o
u
n
t
y
6
9
7
9
(
O
t
h
e
r
)
1
6
5
8
7
1
4
,
3
t
r
a
n
s
p
o
r
t
a
t
i
o
n
_
t
y
p
e
d
r
i
v
i
n
g
1
1
0
4
3
0
3
w
a
l
k
i
n
g
4
0
2
2
3
8
t
r
a
n
s
i
t
2
0
2
8
7
5
,
4
a
l
t
e
r
n
a
t
i
v
e
_
n
a
m
e
1
3
3
5
1
8
8
三
重
県
1
1
0
5
京
都
府
1
1
0
5