I'm new to Mathematica and would appreciate anyone with an experienced eye who would look at the following failed attempt to solve a system of ordinary differential equations and tell me what I'm doing wrong. The function is pasted below and a .nb file is attached.
I'm looking for general symbolic solution to a standard S,I,R (susceptible, infected, recovered) model. Then I'd like to learn how to play with parameters and plotting features. But first, I need a solution. This attached formulation has been running for a few hours without returning a result. What's wrong with its arguments? Is there a way to limit parameter intervals and independent variable interval?
Thanks.
eqns = {s'[t] == m (s0 + i0 + r0) - \[Beta] s[t] i[t] - m s[t], i'[t] == \[Beta] s[t] i[t] - m i[t] - g i[t], r'[t] == g i[t] - m r[t]}
sol = DSolve[eqns, {s, i, r}, t]
Attachments: