WolframAlpha.com
WolframCloud.com
All Sites & Public Resources...
Products & Services
Wolfram|One
Mathematica
Wolfram|Alpha Notebook Edition
Programming Lab
Finance Platform
SystemModeler
Wolfram Player
Wolfram Engine
WolframScript
Enterprise Private Cloud
Enterprise Mathematica
Wolfram|Alpha Appliance
Enterprise Solutions
Corporate Consulting
Technical Consulting
Wolfram|Alpha Business Solutions
Resource System
Data Repository
Neural Net Repository
Function Repository
Wolfram|Alpha
Wolfram|Alpha Pro
Problem Generator
API
Data Drop
Products for Education
Mobile Apps
Wolfram Player
Wolfram Cloud App
Wolfram|Alpha for Mobile
Wolfram|Alpha-Powered Apps
Services
Paid Project Support
Wolfram U
Summer Programs
All Products & Services »
Technologies
Wolfram Language
Revolutionary knowledge-based programming language.
Wolfram Cloud
Central infrastructure for Wolfram's cloud products & services.
Wolfram Science
Technology-enabling science of the computational universe.
Wolfram Notebooks
The preeminent environment for any technical workflows.
Wolfram Engine
Software engine implementing the Wolfram Language.
Wolfram Natural Language Understanding System
Knowledge-based broadly deployed natural language.
Wolfram Data Framework
Semantic framework for real-world data.
Wolfram Universal Deployment System
Instant deployment across cloud, desktop, mobile, and more.
Wolfram Knowledgebase
Curated computable knowledge powering Wolfram|Alpha.
All Technologies »
Solutions
Engineering, R&D
Aerospace & Defense
Chemical Engineering
Control Systems
Electrical Engineering
Image Processing
Industrial Engineering
Mechanical Engineering
Operations Research
More...
Finance, Statistics & Business Analysis
Actuarial Sciences
Bioinformatics
Data Science
Econometrics
Financial Risk Management
Statistics
More...
Education
All Solutions for Education
Trends
Machine Learning
Multiparadigm Data Science
Internet of Things
High-Performance Computing
Hackathons
Software & Web
Software Development
Authoring & Publishing
Interface Development
Web Development
Sciences
Astronomy
Biology
Chemistry
More...
All Solutions »
Learning & Support
Learning
Wolfram Language Documentation
Fast Introduction for Programmers
Wolfram U
Videos & Screencasts
Wolfram Language Introductory Book
Webinars & Training
Summer Programs
Books
Need Help?
Support FAQ
Wolfram Community
Contact Support
Premium Support
Paid Project Support
Technical Consulting
All Learning & Support »
Company
About
Company Background
Wolfram Blog
Events
Contact Us
Work with Us
Careers at Wolfram
Internships
Other Wolfram Language Jobs
Initiatives
Wolfram Foundation
MathWorld
Computer-Based Math
A New Kind of Science
Wolfram Technology for Hackathons
Student Ambassador Program
Wolfram for Startups
Demonstrations Project
Wolfram Innovator Awards
Wolfram + Raspberry Pi
Summer Programs
More...
All Company »
Search
WOLFRAM COMMUNITY
Connect with users of Wolfram technologies to learn, solve problems and share ideas
Join
Sign In
Dashboard
Groups
People
Message Boards
Answer
(
Unmark
)
Mark as an Answer
GROUPS:
Staff Picks
Chemistry
Algebra
Equation Solving
Graphics and Visualization
Wolfram Language
5
Rauan Kaldybaev
Approximations for calculating pH & their qualitative meaning
Rauan Kaldybaev
Posted
18 days ago
784 Views
|
4 Replies
|
5 Total Likes
Follow this post
|
Approximations for calculating pH & their qualitative meaning
by Rauan kaldybaev
Introduction
O
u
t
[
]
=
A
c
t
u
a
l
p
H
W
e
a
k
a
c
i
d
a
p
p
r
o
x
i
m
a
t
i
o
n
S
t
r
o
n
g
a
c
i
d
a
p
p
r
o
x
i
m
a
t
i
o
n
A
s
a
p
h
y
s
i
c
i
s
t
l
e
a
r
n
i
n
g
c
h
e
m
i
s
t
r
y
,
o
n
e
t
h
i
n
g
t
h
a
t
b
o
t
h
e
r
e
d
m
e
a
b
o
u
t
h
o
w
w
e
c
a
l
c
u
l
a
t
e
t
h
e
p
H
o
f
a
s
o
l
u
t
i
o
n
i
s
t
h
a
t
w
e
u
s
u
a
l
l
y
d
o
n
’
t
a
c
c
o
u
n
t
f
o
r
t
h
e
d
i
s
s
o
c
i
a
t
i
o
n
o
f
w
a
t
e
r
.
I
t
i
s
t
r
u
e
t
h
a
t
i
n
m
o
s
t
p
r
a
c
t
i
c
a
l
a
p
p
l
i
c
a
t
i
o
n
s
,
d
i
s
s
o
c
i
a
t
i
o
n
o
f
w
a
t
e
r
c
a
n
b
e
n
e
g
l
e
c
t
e
d
.
S
t
i
l
l
,
c
o
n
c
e
p
t
u
a
l
l
y
i
t
s
o
m
e
h
o
w
s
e
e
m
s
w
r
o
n
g
t
o
n
o
t
t
a
k
e
w
a
t
e
r
i
n
t
o
a
c
c
o
u
n
t
.
I
f
t
h
e
r
e
a
r
e
t
w
o
c
h
e
m
i
c
a
l
r
e
a
c
t
i
o
n
s
g
o
i
n
g
o
n
i
n
a
s
o
l
u
t
i
o
n
,
i
t
i
s
o
n
l
y
p
r
o
p
e
r
t
o
t
h
i
n
k
o
f
b
o
t
h
o
f
t
h
e
m
a
n
d
o
n
l
y
n
e
g
l
e
c
t
o
n
e
o
f
t
h
e
m
w
h
e
n
i
t
’
s
c
o
m
p
l
e
t
e
l
y
c
l
e
a
r
t
h
a
t
i
t
c
a
n
b
e
n
e
g
l
e
c
t
e
d
.
I
n
a
d
d
i
t
i
o
n
,
t
h
e
“
s
t
a
n
d
a
r
d
f
o
r
m
u
l
a
”
f
o
r
a
c
i
d
i
n
w
a
t
e
r
p
r
o
b
l
e
m
s
p
r
e
d
i
c
t
s
t
h
a
t
t
h
e
p
H
o
f
n
e
u
t
r
a
l
w
a
t
e
r
i
s
i
n
f
i
n
i
t
e
,
w
h
i
c
h
i
s
o
f
c
o
u
r
s
e
n
o
t
t
r
u
e
.
T
h
e
c
u
r
r
e
n
t
c
o
m
p
u
t
a
t
i
o
n
a
l
e
s
s
a
y
l
o
o
k
s
a
t
s
e
v
e
r
a
l
a
p
p
r
o
x
i
m
a
t
i
o
n
s
f
o
r
t
h
e
c
a
l
c
u
l
a
t
i
o
n
o
f
p
H
.
F
o
r
e
a
c
h
a
p
p
r
o
x
i
m
a
t
i
o
n
,
i
t
c
o
m
p
u
t
e
s
t
h
e
e
r
r
o
r
a
n
d
s
h
o
w
s
t
h
a
t
i
n
d
e
e
d
,
t
h
e
a
p
p
r
o
x
i
m
a
t
i
o
n
s
a
r
e
u
s
u
a
l
l
y
v
e
r
y
a
c
c
u
r
a
t
e
.
T
h
e
e
s
s
a
y
t
h
e
n
c
o
m
p
a
r
e
s
t
h
e
p
r
e
d
i
c
t
i
o
n
s
o
f
t
h
e
s
e
a
p
p
r
o
x
i
m
a
t
i
o
n
s
t
o
w
h
a
t
w
e
g
e
t
d
i
r
e
c
t
l
y
f
r
o
m
t
h
e
c
h
e
m
i
c
a
l
e
q
u
i
l
i
b
r
i
u
m
e
q
u
a
t
i
o
n
a
n
d
u
s
e
s
t
h
e
s
e
c
o
m
p
a
r
i
s
o
n
t
o
d
r
a
w
q
u
a
l
i
t
a
t
i
v
e
c
o
n
c
l
u
s
i
o
n
s
a
b
o
u
t
t
h
e
p
r
o
c
e
s
s
o
f
d
i
s
s
o
c
i
a
t
i
o
n
o
f
a
c
i
d
.
Deriving the equation of chemical equilibrium of acid in water
C
o
n
s
i
d
e
r
a
s
o
l
u
t
i
o
n
c
o
n
t
a
i
n
i
n
g
a
s
m
a
l
l
a
m
o
u
n
t
o
f
a
c
i
d
.
F
o
r
d
e
f
i
n
i
t
e
n
e
s
s
,
l
e
t
’
s
r
e
s
t
r
i
c
t
t
h
e
d
i
s
c
u
s
s
i
o
n
t
o
m
o
n
o
p
r
o
t
i
c
a
c
i
d
s
,
w
h
i
c
h
c
a
n
o
n
l
y
d
o
n
a
t
e
o
n
e
+
H
i
o
n
-
l
i
k
e
H
C
l
.
A
g
e
n
e
r
i
c
m
o
n
o
p
r
o
t
i
c
a
c
i
d
d
i
s
s
o
c
i
a
t
e
s
a
s
H
2
O
+
H
A
↔
H
3
+
O
+
-
A
-
f
o
r
e
x
a
m
p
l
e
,
H
C
l
d
i
s
s
o
c
i
a
t
e
s
a
s
H
2
O
+
H
C
l
↔
H
3
+
O
+
-
C
l
.
T
h
e
c
o
r
r
e
s
p
o
n
d
i
n
g
c
h
e
m
i
c
a
l
e
q
u
i
l
i
b
r
i
u
m
e
q
u
a
t
i
o
n
i
s
[
H
3
+
O
]
[
-
A
]
[
H
A
]
=
K
a
(
1
)
B
e
c
a
u
s
e
n
o
t
h
i
n
g
e
n
t
e
r
s
o
r
l
e
a
v
e
s
t
h
e
s
o
l
u
t
i
o
n
a
n
d
t
h
e
r
a
d
i
c
a
l
-
A
i
s
n
’
t
c
r
e
a
t
e
d
o
r
d
e
s
t
r
o
y
e
d
,
t
h
e
t
o
t
a
l
a
m
o
u
n
t
o
f
-
A
i
n
t
h
e
s
o
l
u
t
i
o
n
i
s
p
r
e
s
e
r
v
e
d
.
M
a
t
h
e
m
a
t
i
c
a
l
l
y
,
[
H
A
]
+
[
-
A
]
=
a
0
,
w
h
e
r
e
a
0
i
s
s
o
m
e
c
o
n
s
t
a
n
t
:
[
H
A
]
+
[
-
A
]
=
a
0
(
2
)
A
p
a
r
t
f
r
o
m
t
h
e
d
i
s
s
o
c
i
a
t
i
o
n
o
f
a
c
i
d
,
a
n
o
t
h
e
r
p
r
o
c
e
s
s
t
h
a
t
g
o
e
s
o
n
i
n
t
h
e
s
o
l
u
t
i
o
n
i
s
t
h
e
d
i
s
s
o
c
i
a
t
i
o
n
o
f
w
a
t
e
r
,
2
H
2
O
↔
H
3
+
O
+
-
O
H
.
F
o
r
t
h
i
s
r
e
a
c
t
i
o
n
,
t
h
e
e
q
u
i
l
i
b
r
i
u
m
e
q
u
a
t
i
o
n
i
s
[
H
3
+
O
]
[
-
O
H
]
=
K
w
(
3
)
T
h
e
i
o
n
H
3
+
O
i
s
f
o
r
m
e
d
e
i
t
h
e
r
f
r
o
m
t
h
e
r
e
a
c
t
i
o
n
2
H
2
O
↔
H
3
+
O
+
-
O
H
o
r
f
r
o
m
H
2
O
+
H
A
↔
H
3
+
O
+
-
A
.
T
h
e
h
y
d
r
o
x
i
d
e
i
o
n
[
-
O
H
]
i
s
f
o
r
m
e
d
o
n
l
y
f
r
o
m
t
h
e
d
i
s
s
o
c
i
a
t
i
o
n
o
f
w
a
t
e
r
.
D
e
n
o
t
i
n
g
t
h
e
m
o
l
a
r
c
o
n
c
e
n
t
r
a
t
i
o
n
o
f
w
a
t
e
r
t
h
a
t
h
a
s
u
n
d
e
r
g
o
n
e
d
i
s
s
o
c
i
a
t
i
o
n
a
s
d
,
w
e
o
b
t
a
i
n
[
H
3
+
O
]
=
[
-
A
]
+
d
[
-
O
H
]
=
d
(
4
)
C
o
m
b
i
n
i
n
g
t
h
e
t
w
o
p
r
e
v
i
o
u
s
e
q
u
a
t
i
o
n
s
,
w
e
a
r
r
i
v
e
a
t
t
h
e
f
o
r
m
u
l
a
f
o
r
t
h
e
c
o
n
c
e
n
t
r
a
t
i
o
n
o
f
H
3
+
O
:
[
H
3
+
O
]
=
a
+
2
a
+
4
K
w
2
(
5
)
H
e
r
e
,
a
≡
[
-
A
]
d
e
n
o
t
e
s
t
h
e
a
m
o
u
n
t
o
f
a
c
i
d
t
h
a
t
h
a
s
u
n
d
e
r
g
o
n
e
d
i
s
s
o
c
i
a
t
i
o
n
.
p
H
≡
-
L
g
[
H
3
+
O
]
i
s
t
h
e
n
g
i
v
e
n
b
y
p
H
=
-
L
o
g
1
0
a
+
2
a
+
4
K
w
2
(
6
)
I
f
n
o
a
c
i
d
d
i
s
s
o
c
i
a
t
e
s
,
a
=
0
,
a
n
d
t
h
e
c
o
n
c
e
n
t
r
a
t
i
o
n
o
f
H
3
+
O
b
e
c
o
m
e
s
e
q
u
a
l
t
o
K
w
≈
1
·
-
7
1
0
.
T
h
e
p
H
i
s
t
h
e
n
e
q
u
a
l
t
o
7
,
w
h
i
c
h
i
s
t
h
e
a
c
i
d
i
t
y
o
f
p
u
r
e
w
a
t
e
r
.
I
f
a
i
s
m
u
c
h
l
a
r
g
e
r
t
h
a
n
K
w
,
t
h
e
f
o
r
m
u
l
a
c
a
n
b
e
a
p
p
r
o
x
i
m
a
t
e
d
a
s
[
H
3
+
O
]
≈
a
-
i
n
o
t
h
e
r
w
o
r
d
s
,
a
l
m
o
s
t
a
l
l
H
3
+
O
i
o
n
s
p
r
e
s
e
n
t
i
n
t
h
e
s
o
l
u
t
i
o
n
a
r
e
d
u
e
t
o
t
h
e
d
i
s
s
o
c
i
a
t
i
o
n
o
f
a
c
i
d
.
I
f
w
e
c
o
m
b
i
n
e
t
h
i
s
f
o
r
m
u
l
a
w
i
t
h
t
h
e
e
q
u
a
t
i
o
n
s
(
1
)
a
n
d
(
2
)
,
w
e
a
r
r
i
v
e
a
t
a
n
e
q
u
a
t
i
o
n
t
h
a
t
a
l
l
o
w
s
u
s
t
o
d
e
t
e
r
m
i
n
e
t
h
e
a
m
o
u
n
t
o
f
a
c
i
d
a
t
h
a
t
h
a
s
u
n
d
e
r
g
o
n
e
d
i
s
s
o
c
i
a
t
i
o
n
g
i
v
e
n
t
h
e
i
n
i
t
i
a
l
c
o
n
c
e
n
t
r
a
t
i
o
n
a
0
:
K
w
=
2
K
a
2
a
0
-
a
a
-
K
a
(
a
0
-
a
)
(
7
)
T
h
i
s
e
q
u
a
t
i
o
n
f
o
l
l
o
w
s
d
i
r
e
c
t
l
y
f
r
o
m
t
h
e
c
h
e
m
i
c
a
l
e
q
u
i
l
i
b
r
i
u
m
e
q
u
a
t
i
o
n
s
f
o
r
t
h
e
d
i
s
s
o
c
i
a
t
i
o
n
o
f
a
c
i
d
a
n
d
w
a
t
e
r
(
1
)
,
(
3
)
a
n
d
f
r
o
m
t
h
e
m
o
l
a
r
e
q
u
a
t
i
o
n
s
(
2
)
,
(
4
)
.
S
o
f
a
r
,
i
t
d
o
e
s
n
o
t
i
n
v
o
l
v
e
a
n
y
a
p
p
r
o
x
i
m
a
t
i
o
n
s
.
A
n
d
a
l
t
h
o
u
g
h
i
t
c
o
u
l
d
b
e
s
o
l
v
e
d
e
x
a
c
t
l
y
u
s
i
n
g
C
a
r
d
a
n
o
’
s
f
o
r
m
u
l
a
,
t
h
e
l
a
t
t
e
r
i
s
f
a
r
t
o
o
c
o
m
p
l
i
c
a
t
e
d
t
o
g
i
v
e
m
u
c
h
q
u
a
n
t
i
t
a
t
i
v
e
i
n
s
i
g
h
t
s
i
n
t
o
t
h
e
p
r
o
b
l
e
m
a
n
d
t
o
o
b
u
l
k
y
f
o
r
h
a
n
d
c
a
l
c
u
l
a
t
i
o
n
s
.
L
u
c
k
i
l
y
,
t
h
e
a
n
s
w
e
r
t
o
(
7
)
c
a
n
b
e
,
t
o
a
g
o
o
d
d
e
g
r
e
e
o
f
p
r
e
c
i
s
i
o
n
,
f
o
u
n
d
u
s
i
n
g
s
e
v
e
r
a
l
s
i
m
p
l
e
a
p
p
r
o
x
i
m
a
t
i
o
n
s
d
i
s
c
u
s
s
e
d
i
n
t
h
e
n
e
x
t
s
e
c
t
i
o
n
s
.
K
w
≈
0
approximation
I
n
m
o
s
t
p
r
a
c
t
i
c
a
l
a
p
p
l
i
c
a
t
i
o
n
s
,
t
h
e
q
u
a
n
t
i
t
i
e
s
a
,
a
0
,
K
a
,
a
n
d
K
w
a
r
e
e
i
t
h
e
r
v
e
r
y
l
a
r
g
e
o
r
v
e
r
y
s
m
a
l
l
c
o
m
p
a
r
e
d
t
o
e
a
c
h
o
t
h
e
r
-
f
o
r
i
n
s
t
a
n
c
e
,
f
o
r
w
e
a
k
a
c
i
d
s
,
t
h
e
a
m
o
u
n
t
o
f
d
i
s
s
o
c
i
a
t
e
d
a
c
i
d
a
i
s
m
u
c
h
s
m
a
l
l
e
r
t
h
a
n
t
h
e
t
o
t
a
l
a
m
o
u
n
t
o
f
a
c
i
d
a
0
.
T
o
m
a
k
e
u
s
e
o
f
t
h
i
s
f
a
c
t
,
l
e
t
u
s
w
r
i
t
e
t
h
e
e
q
u
a
t
i
o
n
(
7
)
a
s
K
w
2
a
a
0
=
2
K
a
2
1
-
a
a
0
-
K
a
a
0
1
-
a
a
0
2
a
a
0
(
8
)
F
o
r
K
w
0
,
w
e
c
a
n
s
i
m
p
l
i
f
y
(
8
)
a
s
0
=
2
a
+
K
a
a
-
K
a
a
0
.
F
r
o
m
h
e
r
e
,
a
≈
2
K
a
+
4
a
0
K
a
-
K
a
2
.
T
h
i
s
f
o
r
m
u
l
a
i
s
v
a
l
i
d
w
h
e
n
t
h
e
a
m
o
u
n
t
o
f
H
3
+
O
r
e
l
e
a
s
e
d
a
f
t
e
r
t
h
e
d
i
s
s
o
c
i
a
t
i
o
n
o
f
a
c
i
d
i
s
m
u
c
h
l
a
r
g
e
r
t
h
a
n
t
h
e
a
m
o
u
n
t
o
f
H
3
+
O
d
u
e
t
o
t
h
e
d
i
s
s
o
c
i
a
t
i
o
n
o
f
w
a
t
e
r
:
a
≈
2
K
a
+
4
a
0
K
a
-
K
a
2
K
w
<
<
2
K
a
+
4
a
0
K
a
-
K
a
2
(
9
)
p
H
c
a
n
t
h
e
n
b
e
c
a
l
c
u
l
a
t
e
d
u
s
i
n
g
t
h
e
f
o
r
m
u
l
a
(
5
)
.
I
f
K
a
<
<
a
0
,
(
9
)
s
i
m
p
l
i
f
i
e
s
e
v
e
n
f
u
r
t
h
e
r
i
n
t
o
a
≈
a
0
K
a
,
w
h
i
c
h
i
s
t
h
e
f
o
r
m
u
l
a
t
h
a
t
i
s
u
s
u
a
l
l
y
u
s
e
d
t
o
s
o
l
v
e
w
e
a
k
a
c
i
d
i
n
w
a
t
e
r
p
r
o
b
l
e
m
s
.
F
o
r
a
0
<
<
K
a
,
w
e
c
a
n
t
a
k
e
a
f
i
r
s
t
-
o
r
d
e
r
T
a
y
l
o
r
s
e
r
i
e
s
f
o
r
t
h
e
s
q
u
a
r
e
r
o
o
t
t
o
s
e
e
t
h
a
t
a
≈
a
0
.
T
h
u
s
,
w
e
c
a
n
s
e
e
t
h
a
t
t
h
e
f
u
n
c
t
i
o
n
a
[
a
0
]
b
e
h
a
v
e
s
l
i
k
e
a
l
i
n
e
a
r
f
u
n
c
t
i
o
n
n
e
a
r
a
0
=
0
a
n
d
g
r
a
d
u
a
l
l
y
t
r
a
n
s
i
t
i
o
n
s
i
n
t
o
a
s
q
u
a
r
e
r
o
o
t
f
u
n
c
t
i
o
n
f
o
r
a
0
∞
.
I
n
t
h
e
f
i
g
u
r
e
b
e
l
o
w
,
t
h
e
b
l
u
e
l
i
n
e
r
e
p
r
e
s
e
n
t
s
t
h
e
v
a
l
u
e
o
f
p
H
c
o
m
p
u
t
e
d
d
i
r
e
c
t
l
y
f
r
o
m
t
h
e
c
h
e
m
i
c
a
l
e
q
u
i
l
i
b
r
i
u
m
e
q
u
a
t
i
o
n
(
7
)
.
Y
o
u
c
a
n
s
e
e
t
h
a
t
a
t
a
0
=
0
,
t
h
e
p
H
i
s
e
q
u
a
l
t
o
7
,
w
h
i
c
h
a
g
r
e
e
s
w
i
t
h
e
x
p
e
r
i
m
e
n
t
.
H
o
w
e
v
e
r
,
i
f
w
e
d
o
n
’
t
a
c
c
o
u
n
t
f
o
r
t
h
e
d
i
s
s
o
c
i
a
t
i
o
n
o
f
w
a
t
e
r
,
w
e
w
o
u
l
d
t
h
i
n
k
t
h
a
t
t
h
e
r
e
a
r
e
n
o
h
y
d
r
o
n
i
u
m
i
o
n
s
p
r
e
s
e
n
t
i
n
t
h
e
s
o
l
u
t
i
o
n
i
f
n
o
a
c
i
d
i
s
a
d
d
e
d
.
A
n
d
i
f
[
H
3
+
O
]
i
s
z
e
r
o
,
t
h
e
n
p
H
≡
-
L
o
g
1
0
[
H
3
+
O
]
i
s
i
n
f
i
n
i
t
e
-
a
n
d
i
n
d
e
e
d
,
t
h
e
g
r
e
e
n
l
i
n
e
g
o
e
s
t
o
i
n
f
i
n
i
t
y
a
s
a
0
0
.
T
h
e
o
r
a
n
g
e
l
i
n
e
d
i
d
n
’
t
t
a
k
e
t
h
e
d
i
s
s
o
c
i
a
t
i
o
n
o
f
w
a
t
e
r
i
n
t
o
a
c
c
o
u
n
t
w
h
e
n
c
a
l
c
u
l
a
t
i
n
g
a
(
9
)
,
b
u
t
d
i
d
a
c
c
o
u
n
t
f
o
r
i
t
w
h
e
n
f
i
n
d
i
n
g
[
H
3
+
O
]
(
5
)
.
W
h
e
n
c
o
m
p
u
t
i
n
g
a
,
t
h
e
f
o
r
m
u
l
a
(
9
)
a
c
t
s
a
s
i
f
t
h
e
d
i
s
s
o
c
i
a
t
i
o
n
o
f
a
c
i
d
i
s
t
h
e
o
n
l
y
s
o
u
r
c
e
o
f
h
y
d
r
o
n
i
u
m
i
o
n
s
a
n
d
t
h
u
s
o
v
e
r
e
s
t
i
m
a
t
e
s
t
h
e
a
m
o
u
n
t
o
f
a
c
i
d
t
h
a
t
d
i
s
s
o
c
i
a
t
e
s
(
t
h
i
n
k
o
f
L
e
C
h
a
t
e
l
i
e
r
’
s
p
r
i
n
c
i
p
l
e
)
.
T
h
e
f
o
r
m
u
l
a
(
5
)
,
h
o
w
e
v
e
r
,
t
h
e
n
c
o
m
p
u
t
e
s
[
H
3
+
O
]
a
n
d
i
n
c
l
u
d
e
s
t
h
e
c
o
n
t
r
i
b
u
t
i
o
n
o
f
w
a
t
e
r
.
T
h
e
f
i
n
a
l
a
n
s
w
e
r
o
f
[
H
3
+
O
]
i
s
t
h
u
s
h
i
g
h
e
r
t
h
a
n
t
h
e
a
c
t
u
a
l
c
o
n
c
e
n
t
r
a
t
i
o
n
,
a
n
d
o
u
r
e
s
t
i
m
a
t
e
f
o
r
p
H
≡
-
L
o
g
1
0
[
H
3
+
O
]
e
n
d
s
u
p
b
e
i
n
g
s
m
a
l
l
e
r
t
h
a
n
t
h
e
t
r
u
e
v
a
l
u
e
.
O
u
t
[
]
=
A
c
t
u
a
l
p
H
K
w
≈
0
a
p
p
r
o
x
i
m
a
t
i
o
n
W
a
t
e
r
d
i
s
s
o
c
i
a
t
i
o
n
n
o
t
a
c
c
o
u
n
t
e
d
f
o
r
W
e
c
a
n
s
e
e
t
h
a
t
a
s
a
0
i
n
c
r
e
a
s
e
s
,
t
h
e
e
r
r
o
r
o
f
t
h
e
a
p
p
r
o
x
i
m
a
t
i
o
n
s
d
e
c
r
e
a
s
e
s
.
B
u
t
h
o
w
q
u
i
c
k
l
y
d
o
e
s
i
t
d
e
c
r
e
a
s
e
,
e
x
a
c
t
l
y
?
W
e
c
a
n
a
n
s
w
e
r
t
h
i
s
q
u
e
s
t
i
o
n
b
y
l
o
o
k
i
n
g
a
t
t
h
e
c
h
e
m
i
c
a
l
e
q
u
i
l
i
b
r
i
u
m
e
q
u
a
t
i
o
n
(
7
)
.
I
n
t
h
e
a
p
p
r
o
x
i
m
a
t
i
o
n
K
w
≈
0
,
t
h
e
e
q
u
a
t
i
o
n
(
7
)
i
s
s
o
l
v
e
d
a
s
i
f
t
h
e
l
e
f
t
-
h
a
n
d
s
i
d
e
w
e
r
e
z
e
r
o
.
I
f
t
h
e
l
e
f
t
-
h
a
n
d
s
i
d
e
w
a
s
i
n
s
t
e
a
d
s
o
m
e
s
m
a
l
l
n
u
m
b
e
r
,
w
e
w
o
u
l
d
e
x
p
e
c
t
a
t
o
b
e
e
q
u
a
l
t
o
t
h
e
p
r
e
v
i
o
u
s
e
s
t
i
m
a
t
e
p
l
u
s
s
o
m
e
s
m
a
l
l
c
o
r
r
e
c
t
i
o
n
:
a
=
a
a
p
p
r
o
x
(
1
-
ε
)
,
w
i
t
h
ε
<
<
1
a
n
d
a
a
p
p
r
o
x
b
e
i
n
g
o
u
r
e
s
t
i
m
a
t
e
f
o
r
K
w
≈
0
(
g
i
v
e
n
b
y
t
h
e
f
o
r
m
u
l
a
9
)
.
S
u
b
s
t
i
t
u
t
i
n
g
t
h
i
s
i
n
t
o
(
7
)
a
n
d
u
s
i
n
g
t
h
e
f
a
c
t
t
h
a
t
a
a
p
p
r
o
x
i
s
t
h
e
s
o
l
u
t
i
o
n
t
o
(
7
)
w
i
t
h
K
w
=
0
,
w
e
o
b
t
a
i
n
ε
≈
-
2
a
0
-
K
a
+
K
a
(
4
a
0
+
K
a
)
-
4
2
a
0
K
a
+
a
0
-
5
2
K
a
+
3
K
a
K
a
(
4
a
0
+
K
a
)
-
4
K
w
+
-
K
a
+
K
a
(
4
a
0
+
K
a
)
(
2
K
a
+
2
K
w
)
K
w
T
h
e
f
o
r
m
u
l
a
c
a
n
b
e
s
i
g
n
i
f
i
c
a
n
t
l
y
s
i
m
p
l
i
f
i
e
d
i
f
a
0
>
>
K
a
>
>
K
w
:
ε
≈
K
w
2
a
0
K
a
(
1
0
)
S
u
b
s
t
i
t
u
t
i
n
g
t
h
i
s
i
n
t
o
t
h
e
f
o
r
m
u
l
a
(
6
)
f
o
r
p
H
,
w
e
g
e
t
t
h
a
t
f
o
r
a
0
>
>
K
a
>
>
K
w
,
t
h
e
d
i
f
f
e
r
e
n
c
e
b
e
t
w
e
e
n
t
h
e
a
c
t
u
a
l
p
H
c
a
l
c
u
l
a
t
e
d
f
r
o
m
t
h
e
c
h
e
m
i
c
a
l
e
q
u
i
l
i
b
r
i
u
m
e
q
u
a
t
i
o
n
(
7
)
a
n
d
t
h
e
a
p
p
r
o
x
i
m
a
t
e
f
o
r
m
u
l
a
(
9
)
i
s
g
i
v
e
n
b
y
Δ
p
H
≈
1
2
L
o
g
[
1
0
]
K
w
a
0
K
a
(
1
1
)
O
u
t
[
]
=
A
c
t
u
a
l
e
r
r
o
r
P
r
e
d
i
c
t
e
d
e
r
r
o
r
A
s
y
o
u
c
a
n
s
e
e
,
e
r
r
o
r
d
e
c
r
e
a
s
e
s
a
s
1
/
a
0
,
w
h
i
c
h
m
e
a
n
s
t
h
a
t
t
h
e
m
o
r
e
a
c
i
d
i
s
a
d
d
e
d
i
n
t
o
t
h
e
s
o
l
u
t
i
o
n
,
t
h
e
m
o
r
e
a
c
c
u
r
a
t
e
t
h
e
a
p
p
r
o
x
i
m
a
t
e
f
o
r
m
u
l
a
(
9
)
b
e
c
o
m
e
s
.
T
h
i
s
m
a
k
e
s
s
e
n
s
e
-
t
h
e
m
o
r
e
a
c
i
d
w
e
a
d
d
,
t
h
e
m
o
r
e
H
3
+
O
i
s
r
e
l
e
a
s
e
d
a
f
t
e
r
i
t
s
d
i
s
s
o
c
i
a
t
i
o
n
,
a
n
d
t
h
e
m
o
r
e
n
e
g
l
i
g
i
b
l
e
t
h
e
a
m
o
u
n
t
o
f
H
3
+
O
c
o
n
t
r
i
b
u
t
e
d
b
y
w
a
t
e
r
’
s
d
i
s
s
o
c
i
a
t
i
o
n
g
e
t
s
.
L
e
t
’
s
l
o
o
k
a
t
t
h
e
e
x
a
m
p
l
e
p
r
o
b
l
e
m
f
r
o
m
t
h
e
i
n
t
r
o
d
u
c
t
i
o
n
,
w
h
e
r
e
w
e
n
e
e
d
e
d
t
o
c
o
m
p
u
t
e
t
h
e
p
H
o
f
a
0
.
0
0
5
M
s
o
l
u
t
i
o
n
o
f
a
c
e
t
i
c
a
c
i
d
w
i
t
h
K
a
=
1
.
8
·
-
5
1
0
.
S
u
b
s
t
i
t
u
t
i
n
g
t
h
e
s
e
n
u
m
b
e
r
s
i
n
t
o
t
h
e
f
o
r
m
u
l
a
(
1
1
)
,
w
e
g
e
t
t
h
a
t
t
h
e
e
r
r
o
r
i
n
p
H
i
s
r
o
u
g
h
l
y
2
.
4
·
-
8
1
0
.
T
h
i
s
i
s
a
n
i
n
c
r
e
d
i
b
l
y
s
m
a
l
l
e
r
r
o
r
t
h
a
t
w
e
p
r
o
b
a
b
l
y
w
o
n
’
t
e
v
e
n
b
e
a
b
l
e
t
o
m
e
a
s
u
r
e
i
n
a
n
e
x
p
e
r
i
m
e
n
t
.
T
h
i
s
s
h
o
w
s
t
h
a
t
i
n
m
o
s
t
e
x
p
e
r
i
m
e
n
t
s
i
t
i
s
a
p
p
r
o
p
r
i
a
t
e
t
o
n
e
g
l
e
c
t
t
h
e
d
i
s
s
o
c
i
a
t
i
o
n
o
f
w
a
t
e
r
.
I
n
o
r
d
e
r
f
o
r
t
h
e
e
r
r
o
r
i
n
p
H
(
1
1
)
t
o
b
e
s
i
g
n
i
f
i
c
a
n
t
,
a
0
K
a
m
u
s
t
b
e
o
f
o
r
d
e
r
-
1
4
1
0
.
E
x
p
e
r
i
m
e
n
t
a
l
l
y
,
t
h
i
s
c
a
n
b
e
a
c
h
i
e
v
e
d
w
i
t
h
v
e
r
y
w
e
a
k
a
c
i
d
s
,
l
i
k
e
b
o
r
i
c
a
c
i
d
H
3
B
O
3
w
i
t
h
K
a
=
5
.
4
·
-
1
0
1
0
.
T
h
e
c
o
n
c
e
n
t
r
a
t
i
o
n
a
t
w
h
i
c
h
t
h
e
e
r
r
o
r
(
1
1
)
w
o
u
l
d
b
e
c
o
m
e
s
i
g
n
i
f
i
c
a
n
t
w
o
u
l
d
b
e
a
b
o
u
t
-
4
1
0
m
o
l
e
s
p
e
r
l
i
t
e
r
,
w
h
i
c
h
i
s
a
v
e
r
y
s
m
a
l
l
c
o
n
c
e
n
t
r
a
t
i
o
n
.
T
h
i
s
s
h
o
w
s
t
h
a
t
f
o
r
m
o
s
t
p
r
a
c
t
i
c
a
l
p
u
r
p
o
s
e
s
,
t
h
e
e
r
r
o
r
i
n
p
H
o
b
t
a
i
n
e
d
u
s
i
n
g
t
h
e
a
p
p
r
o
x
i
m
a
t
e
f
o
r
m
u
l
a
(
9
)
i
s
e
f
f
e
c
t
i
v
e
l
y
z
e
r
o
.
S
t
i
l
l
,
i
t
w
o
u
l
d
b
e
g
o
o
d
t
o
i
m
p
r
o
v
e
o
n
t
h
e
a
c
c
u
r
a
c
y
o
f
(
9
)
.
S
i
n
c
e
w
e
k
n
o
w
p
r
e
t
t
y
a
c
c
u
r
a
t
e
l
y
w
h
a
t
t
h
e
e
r
r
o
r
o
f
t
h
e
a
p
p
r
o
x
i
m
a
t
e
f
o
r
m
u
l
a
(
8
)
i
s
,
w
e
c
a
n
a
c
t
u
a
l
l
y
s
u
b
t
r
a
c
t
i
t
f
r
o
m
o
u
r
i
n
i
t
i
a
l
e
s
t
i
m
a
t
e
t
o
g
e
t
a
m
o
r
e
p
r
e
c
i
s
e
f
o
r
m
u
l
a
:
p
H
≈
p
H
K
w
≈
0
+
1
2
L
o
g
[
1
0
]
K
w
a
0
K
a
(
1
2
)
T
h
e
e
r
r
o
r
o
f
p
H
K
w
≈
0
d
e
c
r
e
a
s
e
s
a
s
1
/
a
0
.
B
e
c
a
u
s
e
t
h
e
f
o
r
m
u
l
a
(
1
1
)
t
a
k
e
s
c
a
r
e
o
f
t
h
e
1
/
a
0
t
e
r
m
,
i
t
s
e
r
r
o
r
d
e
c
r
e
a
s
e
s
e
v
e
n
f
a
s
t
e
r
.
I
n
t
h
e
f
i
g
u
r
e
b
e
l
o
w
,
y
o
u
c
a
n
s
e
e
t
h
a
t
t
h
e
e
s
t
i
m
a
t
e
f
o
r
p
H
g
i
v
e
n
b
y
t
h
e
n
e
w
f
o
r
m
u
l
a
c
o
n
v
e
r
g
e
s
t
o
t
h
e
a
c
t
u
a
l
v
a
l
u
e
o
f
p
H
m
u
c
h
f
a
s
t
e
r
t
h
a
n
t
h
a
t
g
i
v
e
n
b
y
t
h
e
o
l
d
f
o
r
m
u
l
a
.
O
f
c
o
u
r
s
e
,
i
t
m
u
s
t
b
e
n
o
t
e
d
t
h
a
t
t
h
e
a
m
o
u
n
t
o
f
p
r
e
c
i
s
i
o
n
g
i
v
e
n
b
y
(
1
1
)
i
s
n
’
t
r
e
a
l
l
y
g
o
i
n
g
t
o
b
e
u
s
e
f
u
l
o
r
e
v
e
n
m
e
a
s
u
r
a
b
l
e
i
n
m
o
s
t
p
r
a
c
t
i
c
a
l
e
x
p
e
r
i
m
e
n
t
s
,
s
i
n
c
e
t
h
e
e
r
r
o
r
o
f
m
e
a
s
u
r
e
m
e
n
t
o
f
p
H
a
n
d
t
h
e
d
i
s
t
o
r
t
i
o
n
s
i
n
t
h
e
p
H
l
e
v
e
l
c
a
u
s
e
d
b
y
t
h
e
v
a
r
i
o
u
s
i
m
p
u
r
i
t
i
e
s
i
n
w
a
t
e
r
w
i
l
l
l
i
k
e
l
y
b
e
g
r
e
a
t
e
r
t
h
a
n
t
h
e
p
r
e
c
i
s
i
o
n
o
f
(
1
1
)
.
S
t
i
l
l
,
i
t
’
s
a
s
a
t
i
s
f
y
i
n
g
p
i
e
c
e
o
f
m
a
t
h
t
o
d
o
.
O
u
t
[
]
=
A
c
t
u
a
l
p
H
A
p
p
r
o
x
i
m
a
t
e
f
o
r
m
u
l
a
I
m
p
r
o
v
e
d
a
p
p
r
o
x
i
m
a
t
e
Supplemental code
I
n
[
]
:
=
S
i
m
p
l
i
f
y
-
#
/
.
ε
0
D
[
#
,
ε
]
/
.
ε
0
,
A
s
s
u
m
p
t
i
o
n
s
{
a
0
>
0
,
K
A
>
0
,
K
w
>
0
}
&
T
o
g
e
t
h
e
r
(
2
K
A
2
(
a
0
-
a
)
-
K
A
(
a
0
-
a
)
2
a
-
K
w
2
a
)
/
.
a
(
1
-
ε
)
2
K
A
+
4
a
0
K
A
-
K
A
2
O
u
t
[
]
=
-
2
a
0
-
K
A
+
K
A
(
4
a
0
+
K
A
)
K
w
-
4
2
a
0
K
A
-
3
K
A
+
5
K
A
(
4
a
0
+
K
A
)
+
a
0
-
5
2
K
A
+
3
K
A
K
A
(
4
a
0
+
K
A
)
-
4
K
w
-
2
K
A
K
w
+
2
K
A
(
4
a
0
+
K
A
)
K
w
I
n
[
]
:
=
A
s
y
m
p
t
o
t
i
c
-
2
a
0
-
K
A
+
K
A
(
4
a
0
+
K
A
)
K
w
-
4
2
a
0
K
A
-
3
K
A
+
5
K
A
(
4
a
0
+
K
A
)
+
a
0
-
5
2
K
A
+
3
K
A
K
A
(
4
a
0
+
K
A
)
-
4
K
w
-
2
K
A
K
w
+
2
K
A
(
4
a
0
+
K
A
)
K
w
,
a
0
∞
O
u
t
[
]
=
K
w
2
a
0
K
A
i
f
K
w
∈
&
&
K
A
>
0
I
n
[
]
:
=
L
i
m
i
t
S
i
m
p
l
i
f
y
D
D
-
2
a
0
-
K
A
+
K
A
(
4
a
0
+
K
A
)
K
w
-
4
2
a
0
K
A
-
3
K
A
+
5
K
A
(
4
a
0
+
K
A
)
+
a
0
-
5
2
K
A
+
3
K
A
K
A
(
4
a
0
+
K
A
)
-
4
K
w
-
2
K
A
K
w
+
2
K
A
(
4
a
0
+
K
A
)
K
w
,
K
w
/
.
a
0
1
x
,
x
,
A
s
s
u
m
p
t
i
o
n
s
{
x
>
0
,
K
A
>
0
,
K
w
>
0
}
,
x
0
O
u
t
[
]
=
1
2
K
A
I
n
[
]
:
=
S
i
m
p
l
i
f
y
D
D
-
L
o
g
1
0
a
+
2
a
+
4
K
w
2
,
a
ε
a
/
.
a
2
K
A
+
4
a
0
K
A
-
K
A
2
,
ε
K
w
2
a
0
K
A
,
K
w
/
.
K
w
0
K
w
,
A
s
s
u
m
p
t
i
o
n
s
{
a
0
>
0
,
K
A
>
0
}
O
u
t
[
]
=
-
K
w
a
0
K
A
L
o
g
[
1
0
0
]
I
n
[
]
:
=
B
l
o
c
k
K
w
=
-
1
4
1
0
,
K
A
=
-
9
1
0
,
a
c
c
u
r
a
t
e
F
o
r
m
u
l
a
,
s
m
a
l
l
K
w
F
o
r
m
u
l
a
,
n
o
K
w
F
o
r
m
u
l
a
,
a
c
c
u
r
a
t
e
F
o
r
m
u
l
a
=
-
L
o
g
1
0
#
+
2
#
+
4
K
w
2
&
@
R
e
@
S
o
l
v
e
K
w
2
a
a
0
2
K
A
2
1
-
a
a
0
-
K
A
a
0
1
-
a
a
0
2
a
a
0
,
a
[
[
3
,
1
,
2
]
]
;
s
m
a
l
l
K
w
F
o
r
m
u
l
a
=
-
L
o
g
1
0
#
+
2
#
+
4
K
w
2
&
@
2
K
A
+
4
a
0
K
A
-
K
A
2
;
n
o
K
w
F
o
r
m