0
|
1685 Views
|
|
0 Total Likes
View groups...
Share

# How to draw sectional plot for a 3D parameter equation?

Posted 1 year ago
 Firstly, the Mathematica code is given as A = -2/3000; F = (7 Sinh[\[Xi] - 0.3 t])/(30 Cosh[\[Xi] - 0.3 t]) - ( 23 Sinh[\[Xi] - 0.3 t])/(60 (Cosh[\[Xi] - 0.3 t])^3) + ( 7 Sinh[\[Xi] - 0.1 t])/(15 Cosh[\[Xi] - 0.1 t]) - ( 23 Sinh[\[Xi] - 0.1 t])/(30 (Cosh[\[Xi] - 0.1 t])^3) - ( 7 Sinh[\[Xi] + 0.1 t])/(15 Cosh[\[Xi] + 0.1 t]) + ( 23 Sinh[\[Xi] + 0.1 t])/(30 (Cosh[\[Xi] + 0.1 t])^3) + 10; FX = 0.3 (Sech[\[Xi] - 0.3 t])^2 + 0.5 (Sech[\[Xi] - 0.1 t])^2 - 0.8 (Sech[\[Xi] + 0.1 t])^2; G = (7 Sinh[\[Eta]])/(30 Cosh[\[Eta]]) - (23 Sinh[\[Eta]])/( 60 (Cosh[\[Eta]])^3); GY = 0.3 (Sech[\[Eta]])^2; func[\[Xi]_, \[Eta]_, t_] = (-3 FX*GY)/(2 A (F + G)^2); With[{t = -25}, With[{X = \[Xi] - 0.5 Tanh[\[Xi] - 0.3 t] - Tanh[\[Xi] - 0.1 t] - 1.5 Tanh[\[Xi] + 0.1 t], Y = \[Eta] - 1.15 Tanh[\[Eta]]}, ParametricPlot3D[{X, Y, func[\[Xi], \[Eta], t]}, {\[Xi], 4, -10}, {\[Eta], 3, -3}, PlotRange -> All, Mesh -> None, PlotPoints -> 100, ColorFunction -> "Rainbow", AxesLabel -> {Style[x, {15}], Style[y, {15}]}]]]  and it comes Here, I would like to draw a 2D sectional plot for this 3D graphic at y=0, such as To achieve this goal, my code is Y = 0; With[{t = -25}, With[{X = \[Xi] - 0.5 Tanh[\[Xi] - 0.3 t] - Tanh[\[Xi] - 0.1 t] - 1.5 Tanh[\[Xi] + 0.1 t]}, ParametricPlot[{X, func[\[Xi], \[Eta], t]}, {\[Xi], 5, -10}, {\[Eta], 3, -3}, PlotRange -> All, Mesh -> None, PlotPoints -> 100, AxesLabel -> {Style[x, {15}], Style[y, {15}]}]]]  and it comes How can I get the second picture(line sectional plot)?
 By plotting over the range {n,-3,3} you are plotting a parameteric region that contains all curves for -3 Full] Or plot all the cureves ParametricPlot[ Evaluate[{X[\[Xi], #, -25], func[\[Xi], #, -25]} & /@ Range[-3, 3, .5]], {\[Xi], 5, -10}, PlotRange -> Full] `