Sergey,
Michael's answer seems correct to me to machine precision. You get a warning about machine precision and an answer. The warning is that you are only getting answers to machine precision and no better. You can get better precision if you use 3/10 instead of 0.3 and you can them specify any precision you want. For example:
In[22]:= ans =
Solve[x^5 - 3 x^(2 + 3 I/10) - 32 == 0 && -10 < Re[x] < 10 && -10 <
Im[x] < 10, x, WorkingPrecision -> 50]
Out[22]= {{x -> -1.6109463314351326392988566553712692531598610618242 \
+ 1.2464743105597007675161723821942332067829191674769 I}, {x -> \
-1.4627223756377303297165335908679364247281052953771 -
1.4456020698021564339153511956933357083440670693014 I}, {x ->
0.4163131764243939365848417988905193285864645894657 -
1.8028491278527650010864755199413635992617259467944 I}, {x ->
0.5487474851393810132123387637492439707377603539200 +
1.8272260736037174136816701325357997471978574779219 I}, {x ->
2.1448022395172964092246332752422095752340324284946 +
0.0334120451626065251059523893164733974520934509475 I}}
You can confirm your answer with:
In[23]:= x^5 - 3 x^(2 + 3 I/10) - 32 /. ans
Out[23]= {0.*10^-48 + 0.*10^-48 I, 0.*10^-48 + 0.*10^-48 I,
0.*10^-48 + 0.*10^-48 I, 0.*10^-48 + 0.*10^-48 I,
0.*10^-48 + 0.*10^-48 I}
So you are getting close to 50 digits of precision here.
Michael's answer was correct to machine precision (15 digits on my machine) with is usually all anyone ever needs.
Regards,
Neil