The material was professionally presented. Great video and audio quality. You clearly had much preparation on the material and practice presenting it.
I found the speed of your speaking a bit fast; I would have liked to hear the material at about 80% of the speed you used. Also, I would have liked a couple of seconds of pause when you were going to change topics. Short breaks in the speaking could function as a cue to pause the video and think about a particular concept -- perhaps enter/explore the concepts in a Mathematica Notebook. The speed of speaking might be an issue for viewers who are not fluent in English.
I personally like to manually visualize/verify calculations; I'd like you to do that a big more frequently (but, of course, I can always do that on my own). The summation of 1/(2^k) is straightforward, but I'm not quite as fast doing the summation of 1/k!. After pause, I see how we immediately get to 5/2. Fascinating that the summation converges to e; it's the constant that won't quit! It was also great showing an example that graphically shows rectangles of integration that could be manipulated to slice with a finer/coarser granularity. In their 2022 [Calculus with 3DP book][1], Joan Horvath and Rich Cameron note that traditional visualizations are the bane of some math students. That example could be used as a starting point for physically curve-fitting segments (with under a rubber band?) with a 3DP model. IDK if Wolfram U has considered physical models to supplement teaching of abstract concepts. Given the large support for them in the Language, it should be straightforward to do. Maybe optional exercises...
I love your reactions on certain examples. Sometimes, this stuff is fun, interesting, or just a bit strange. That's why videos and courses like this are a great path for learning. Thank you.