"I wouldn't really call it a "simple" expression."
I meant that it doesn't involve any complicated functions, only the most basic operations.
What you all write about splitting the lists is not true for me. If I only Simplify the expression, so if I evaluate
Simplify[{-(7/9)+1/(3 Sqrt[2 (1+(-89-252 (-(13469/22572)+(31 Sqrt[527/2])/11286)-162 (-(13469/22572)+(31 Sqrt[527/2])/11286)^2)/(162 (4087/22572+(31 Sqrt[527/2])/11286)^2))]),(5 Sqrt[2])/9+Sqrt[(-89-252 (-(13469/22572)+(31 Sqrt[527/2])/11286)-162 (-(13469/22572)+(31 Sqrt[527/2])/11286)^2)/(1+(-89-252 (-(13469/22572)+(31 Sqrt[527/2])/11286)-162 (-(13469/22572)+(31 Sqrt[527/2])/11286)^2)/(162 (4087/22572+(31 Sqrt[527/2])/11286)^2))]/(54 (4087/22572+(31 Sqrt[527/2])/11286))}=={-(8/19)-1/Sqrt[19 (1+(-((31 Sqrt[2])/171)+1/(9 Sqrt[2/(-89-252 (-(13469/22572)+(31 Sqrt[527/2])/11286)-162 (-(13469/22572)+(31 Sqrt[527/2])/11286)^2)]))^2/(-(3965/22572)+(31 Sqrt[527/2])/11286)^2)],(14 Sqrt[2])/19-(-((31 Sqrt[2])/171)+1/(9 Sqrt[2/(-89-252 (-(13469/22572)+(31 Sqrt[527/2])/11286)-162 (-(13469/22572)+(31 Sqrt[527/2])/11286)^2)]))/((-(3965/22572)+(31 Sqrt[527/2])/11286) Sqrt[19 (1+(-((31 Sqrt[2])/171)+1/(9 Sqrt[2/(-89-252 (-(13469/22572)+(31 Sqrt[527/2])/11286)-162 (-(13469/22572)+(31 Sqrt[527/2])/11286)^2)]))^2/(-(3965/22572)+(31 Sqrt[527/2])/11286)^2)])}]
I get
{-(((-3965+31 Sqrt[1054]) (-1+9 Sqrt[1254/(230348-1891 Sqrt[1054]+15710428 Sqrt[17/(341575-8174 Sqrt[1054])]-10588825 Sqrt[62/(341575-8174 Sqrt[1054])])]))/22572),((51250980 Sqrt[2]+777480 Sqrt[527]+Sqrt[31 (341575-8174 Sqrt[1054])] (4087+31 Sqrt[1054]))/(4087+31 Sqrt[1054])-9 Sqrt[2] (1848+Sqrt[(627 (-341575+8174 Sqrt[1054]))/(-94972831936+2528782877 Sqrt[1054]-10732578888200 Sqrt[17/(341575-8174 Sqrt[1054])]+5799967553399 Sqrt[62/(341575-8174 Sqrt[1054])])] (-4092 Sqrt[2]+Sqrt[31 (341575-8174 Sqrt[1054])])))/22572}=={0,0}
If I now split the expression and apply FullSimplify to both of them, different things happen depending of the order of evaluation.
FullSimplify[((-3965+31 Sqrt[1054]) (-1+9 Sqrt[1254/(230348-1891 Sqrt[1054]+15710428 Sqrt[17/(341575-8174 Sqrt[1054])]-10588825 Sqrt[62/(341575-8174 Sqrt[1054])])]))/22572==0]
FullSimplify[((51250980 Sqrt[2]+777480 Sqrt[527]+Sqrt[31 (341575-8174 Sqrt[1054])] (4087+31 Sqrt[1054]))/(4087+31 Sqrt[1054])-9 Sqrt[2] (1848+Sqrt[(627 (-341575+8174 Sqrt[1054]))/(-94972831936+2528782877 Sqrt[1054]-10732578888200 Sqrt[17/(341575-8174 Sqrt[1054])]+5799967553399 Sqrt[62/(341575-8174 Sqrt[1054])])] (-4092 Sqrt[2]+Sqrt[31 (341575-8174 Sqrt[1054])])))/22572==0]
If I evaluate the first expression first and then the second, it hangs up. If I do it the other way around, it usually works, though sometimes it also hangs up. Surprisingly calling
ClearSystemCache[]
between the two doesn't seem to make any difference.