Hello. This is the output 
 
{0, 0, 0, 0, 0, -(1/2)  E^(-t Sqrt[k^2 + 2 \[Sigma]^2])  x  C[4] - 
  1/2  E^(t Sqrt[k^2 + 2 \[Sigma]^2])  x  C[4] + (
  E^(-t Sqrt[k^2 + 2 \[Sigma]^2])  k^2  x  C[4])/(
  2 (k^2 + 2 \[Sigma]^2)) + (
  E^(t Sqrt[k^2 + 2 \[Sigma]^2])  k^2  x  C[4])/(
  2 (k^2 + 2 \[Sigma]^2)) + (
  E^(-t Sqrt[k^2 + 2 \[Sigma]^2])  x  \[Sigma]^2  C[4])/(
  k^2 + 2 \[Sigma]^2) + (
  E^(t Sqrt[k^2 + 2 \[Sigma]^2])  x  \[Sigma]^2  C[4])/(
  k^2 + 2 \[Sigma]^2), -((k^2  u  \[Theta]  C[3])/(2 \[Sigma]^2)) + (
  E^(t Sqrt[k^2 + 2 \[Sigma]^2])  k^2  u  \[Theta]  C[3])/(
  2 \[Sigma]^2) + (k^2  u  \[Theta]  C[3])/(k^2 + 2 \[Sigma]^2) - (
  E^(t Sqrt[k^2 + 2 \[Sigma]^2])  k^2  u  \[Theta]  C[3])/(
  k^2 + 2 \[Sigma]^2) + (k^4  u  \[Theta]  C[3])/(
  2 \[Sigma]^2 (k^2 + 2 \[Sigma]^2)) - (
  E^(t Sqrt[k^2 + 2 \[Sigma]^2])  k^4  u  \[Theta]  C[3])/(
  2 \[Sigma]^2 (k^2 + 2 \[Sigma]^2)) + (
  E^(-t Sqrt[k^2 + 2 \[Sigma]^2])  k  u  \[Theta]  C[3])/Sqrt[
  k^2 + 2 \[Sigma]^2] - (
  E^(t Sqrt[k^2 + 2 \[Sigma]^2])  k  u  \[Theta]  C[3])/Sqrt[
  k^2 + 2 \[Sigma]^2] + (
  E^(-t Sqrt[k^2 + 2 \[Sigma]^2])  k^3  u  \[Theta]  C[3])/(
  2 \[Sigma]^2 Sqrt[k^2 + 2 \[Sigma]^2]) - (
  E^(t Sqrt[k^2 + 2 \[Sigma]^2])  k^3  u  \[Theta]  C[3])/(
  2 \[Sigma]^2 Sqrt[k^2 + 2 \[Sigma]^2]) - (
  E^(-t Sqrt[k^2 + 2 \[Sigma]^2])  k  u  \[Theta]  Sqrt[
   k^2 + 2 \[Sigma]^2]  C[3])/(2 \[Sigma]^2) + (
  E^(t Sqrt[k^2 + 2 \[Sigma]^2])  k  u  \[Theta]  Sqrt[
   k^2 + 2 \[Sigma]^2]  C[3])/(2 \[Sigma]^2) + (
  E^(-t Sqrt[k^2 + 2 \[Sigma]^2])  k  u  x  C[4])/(2 \[Sigma]^2) + (
  E^(t Sqrt[k^2 + 2 \[Sigma]^2])  k  u  x  C[4])/(2 \[Sigma]^2) + (
  k^2  u  \[Theta]  C[4])/(k^2 + 2 \[Sigma]^2)^(3/2) - (
  E^(t Sqrt[k^2 + 2 \[Sigma]^2])  k^2  u  \[Theta]  C[
   4])/(k^2 + 2 \[Sigma]^2)^(3/2) + (k^4  u  \[Theta]  C[4])/(
  2 \[Sigma]^2 (k^2 + 2 \[Sigma]^2)^(3/2)) - (
  E^(t Sqrt[k^2 + 2 \[Sigma]^2])  k^4  u  \[Theta]  C[4])/(
  2 \[Sigma]^2 (k^2 + 2 \[Sigma]^2)^(3/2)) - (
  E^(-t Sqrt[k^2 + 2 \[Sigma]^2])  k  u  x  C[4])/(
  k^2 + 2 \[Sigma]^2) - (
  E^(t Sqrt[k^2 + 2 \[Sigma]^2])  k  u  x  C[4])/(
  k^2 + 2 \[Sigma]^2) - (
  E^(-t Sqrt[k^2 + 2 \[Sigma]^2])  k^3  u  x  C[4])/(
  2 \[Sigma]^2 (k^2 + 2 \[Sigma]^2)) - (
  E^(t Sqrt[k^2 + 2 \[Sigma]^2])  k^3  u  x  C[4])/(
  2 \[Sigma]^2 (k^2 + 2 \[Sigma]^2)) + (2  u  x  C[4])/Sqrt[
  k^2 + 2 \[Sigma]^2] + (E^(-t Sqrt[k^2 + 2 \[Sigma]^2])  u  x  C[4])/
  Sqrt[k^2 + 2 \[Sigma]^2] - (
  5  E^(t Sqrt[k^2 + 2 \[Sigma]^2])  u  x  C[4])/Sqrt[
  k^2 + 2 \[Sigma]^2] + (
  k^2  u  x  C[4])/(\[Sigma]^2 Sqrt[k^2 + 2 \[Sigma]^2]) + (
  E^(-t Sqrt[k^2 + 2 \[Sigma]^2])  k^2  u  x  C[4])/(
  2 \[Sigma]^2 Sqrt[k^2 + 2 \[Sigma]^2]) - (
  5  E^(t Sqrt[k^2 + 2 \[Sigma]^2])  k^2  u  x  C[4])/(
  2 \[Sigma]^2 Sqrt[k^2 + 2 \[Sigma]^2]) - (k^2  u  \[Theta]  C[4])/(
  2 \[Sigma]^2 Sqrt[k^2 + 2 \[Sigma]^2]) + (
  E^(t Sqrt[k^2 + 2 \[Sigma]^2])  k^2  u  \[Theta]  C[4])/(
  2 \[Sigma]^2 Sqrt[k^2 + 2 \[Sigma]^2]) - (
  u  x  Sqrt[k^2 + 2 \[Sigma]^2]  C[4])/\[Sigma]^2 - (
  E^(-t Sqrt[k^2 + 2 \[Sigma]^2])  u  x  Sqrt[k^2 + 2 \[Sigma]^2]  C[
   4])/(2 \[Sigma]^2) + (
  5  E^(t Sqrt[k^2 + 2 \[Sigma]^2])  u  x  Sqrt[k^2 + 2 \[Sigma]^2]
     C[4])/(2 \[Sigma]^2) - (
  E^(1/2 t Sqrt[k^2 + 2 \[Sigma]^2])  k  u  \[Theta]  C[5])/(
  2 x^(3/2)) + (
  E^(1/2 t Sqrt[k^2 + 2 \[Sigma]^2])  k^2  u  \[Theta]^2  C[5])/(
  2 x^(3/2) \[Sigma]^2) + (
  3  E^(1/2 t Sqrt[k^2 + 2 \[Sigma]^2])  u  \[Sigma]^2  C[5])/(
  32 x^(3/2)) - (
  E^(-(1/2) t Sqrt[k^2 + 2 \[Sigma]^2])  k  u  \[Theta]  C[6])/(
  2 x^(3/2)) + (
  E^(-(1/2) t Sqrt[k^2 + 2 \[Sigma]^2])  k^2  u  \[Theta]^2  C[6])/(
  2 x^(3/2) \[Sigma]^2) + (
  3  E^(-(1/2) t Sqrt[k^2 + 2 \[Sigma]^2])  u  \[Sigma]^2  C[6])/(
  32 x^(3/2)) - x g[x, t] + 
\!\(\*SuperscriptBox[\(g\), 
TagBox[
RowBox[{"(", 
RowBox[{"0", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, t] - k x 
\!\(\*SuperscriptBox[\(g\), 
TagBox[
RowBox[{"(", 
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, t] + k \[Theta] 
\!\(\*SuperscriptBox[\(g\), 
TagBox[
RowBox[{"(", 
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, t] + 1/2 x \[Sigma]^2 
\!\(\*SuperscriptBox[\(g\), 
TagBox[
RowBox[{"(", 
RowBox[{"2", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, t]}` . My objective is to obtain a list  `{0, 0, 0, 0, 0, 0, 0}` . That being said on position P[[6]] I have `Simplify[ P[[6]] ] ` which outputs `0` . From P[[7]],  I want to obtain the values of `\[Kappa]` , `\[Sigma]` , `\[Theta]` such that `(E^(-(1/2) t Sqrt[
  k^2 + 2 \[Sigma]^2])  u  (16 k^2 \[Theta]^2 - 
   16 k \[Theta] \[Sigma]^2 + 
   3 \[Sigma]^4)  (E^(t Sqrt[k^2 + 2 \[Sigma]^2])  C[5] + C[
   6]))/(32 x^(3/2) \[Sigma]^2) = 0
Firstly I want to put together like terms of g[x,t] and equate to 0. This is my attempt ReplaceAll[g[x, t] -> 0][EDs[[7]]] (* This syntax is not correct *) , but it is not correct. Then from this level, it is to obtain the real values of \[Kappa] , \[Sigma] , \[Theta] so that I end up with a list {0, 0, 0, 0, 0, 0, 0} .