Hello. This is the output
{0, 0, 0, 0, 0, -(1/2) E^(-t Sqrt[k^2 + 2 \[Sigma]^2]) x C[4] -
1/2 E^(t Sqrt[k^2 + 2 \[Sigma]^2]) x C[4] + (
E^(-t Sqrt[k^2 + 2 \[Sigma]^2]) k^2 x C[4])/(
2 (k^2 + 2 \[Sigma]^2)) + (
E^(t Sqrt[k^2 + 2 \[Sigma]^2]) k^2 x C[4])/(
2 (k^2 + 2 \[Sigma]^2)) + (
E^(-t Sqrt[k^2 + 2 \[Sigma]^2]) x \[Sigma]^2 C[4])/(
k^2 + 2 \[Sigma]^2) + (
E^(t Sqrt[k^2 + 2 \[Sigma]^2]) x \[Sigma]^2 C[4])/(
k^2 + 2 \[Sigma]^2), -((k^2 u \[Theta] C[3])/(2 \[Sigma]^2)) + (
E^(t Sqrt[k^2 + 2 \[Sigma]^2]) k^2 u \[Theta] C[3])/(
2 \[Sigma]^2) + (k^2 u \[Theta] C[3])/(k^2 + 2 \[Sigma]^2) - (
E^(t Sqrt[k^2 + 2 \[Sigma]^2]) k^2 u \[Theta] C[3])/(
k^2 + 2 \[Sigma]^2) + (k^4 u \[Theta] C[3])/(
2 \[Sigma]^2 (k^2 + 2 \[Sigma]^2)) - (
E^(t Sqrt[k^2 + 2 \[Sigma]^2]) k^4 u \[Theta] C[3])/(
2 \[Sigma]^2 (k^2 + 2 \[Sigma]^2)) + (
E^(-t Sqrt[k^2 + 2 \[Sigma]^2]) k u \[Theta] C[3])/Sqrt[
k^2 + 2 \[Sigma]^2] - (
E^(t Sqrt[k^2 + 2 \[Sigma]^2]) k u \[Theta] C[3])/Sqrt[
k^2 + 2 \[Sigma]^2] + (
E^(-t Sqrt[k^2 + 2 \[Sigma]^2]) k^3 u \[Theta] C[3])/(
2 \[Sigma]^2 Sqrt[k^2 + 2 \[Sigma]^2]) - (
E^(t Sqrt[k^2 + 2 \[Sigma]^2]) k^3 u \[Theta] C[3])/(
2 \[Sigma]^2 Sqrt[k^2 + 2 \[Sigma]^2]) - (
E^(-t Sqrt[k^2 + 2 \[Sigma]^2]) k u \[Theta] Sqrt[
k^2 + 2 \[Sigma]^2] C[3])/(2 \[Sigma]^2) + (
E^(t Sqrt[k^2 + 2 \[Sigma]^2]) k u \[Theta] Sqrt[
k^2 + 2 \[Sigma]^2] C[3])/(2 \[Sigma]^2) + (
E^(-t Sqrt[k^2 + 2 \[Sigma]^2]) k u x C[4])/(2 \[Sigma]^2) + (
E^(t Sqrt[k^2 + 2 \[Sigma]^2]) k u x C[4])/(2 \[Sigma]^2) + (
k^2 u \[Theta] C[4])/(k^2 + 2 \[Sigma]^2)^(3/2) - (
E^(t Sqrt[k^2 + 2 \[Sigma]^2]) k^2 u \[Theta] C[
4])/(k^2 + 2 \[Sigma]^2)^(3/2) + (k^4 u \[Theta] C[4])/(
2 \[Sigma]^2 (k^2 + 2 \[Sigma]^2)^(3/2)) - (
E^(t Sqrt[k^2 + 2 \[Sigma]^2]) k^4 u \[Theta] C[4])/(
2 \[Sigma]^2 (k^2 + 2 \[Sigma]^2)^(3/2)) - (
E^(-t Sqrt[k^2 + 2 \[Sigma]^2]) k u x C[4])/(
k^2 + 2 \[Sigma]^2) - (
E^(t Sqrt[k^2 + 2 \[Sigma]^2]) k u x C[4])/(
k^2 + 2 \[Sigma]^2) - (
E^(-t Sqrt[k^2 + 2 \[Sigma]^2]) k^3 u x C[4])/(
2 \[Sigma]^2 (k^2 + 2 \[Sigma]^2)) - (
E^(t Sqrt[k^2 + 2 \[Sigma]^2]) k^3 u x C[4])/(
2 \[Sigma]^2 (k^2 + 2 \[Sigma]^2)) + (2 u x C[4])/Sqrt[
k^2 + 2 \[Sigma]^2] + (E^(-t Sqrt[k^2 + 2 \[Sigma]^2]) u x C[4])/
Sqrt[k^2 + 2 \[Sigma]^2] - (
5 E^(t Sqrt[k^2 + 2 \[Sigma]^2]) u x C[4])/Sqrt[
k^2 + 2 \[Sigma]^2] + (
k^2 u x C[4])/(\[Sigma]^2 Sqrt[k^2 + 2 \[Sigma]^2]) + (
E^(-t Sqrt[k^2 + 2 \[Sigma]^2]) k^2 u x C[4])/(
2 \[Sigma]^2 Sqrt[k^2 + 2 \[Sigma]^2]) - (
5 E^(t Sqrt[k^2 + 2 \[Sigma]^2]) k^2 u x C[4])/(
2 \[Sigma]^2 Sqrt[k^2 + 2 \[Sigma]^2]) - (k^2 u \[Theta] C[4])/(
2 \[Sigma]^2 Sqrt[k^2 + 2 \[Sigma]^2]) + (
E^(t Sqrt[k^2 + 2 \[Sigma]^2]) k^2 u \[Theta] C[4])/(
2 \[Sigma]^2 Sqrt[k^2 + 2 \[Sigma]^2]) - (
u x Sqrt[k^2 + 2 \[Sigma]^2] C[4])/\[Sigma]^2 - (
E^(-t Sqrt[k^2 + 2 \[Sigma]^2]) u x Sqrt[k^2 + 2 \[Sigma]^2] C[
4])/(2 \[Sigma]^2) + (
5 E^(t Sqrt[k^2 + 2 \[Sigma]^2]) u x Sqrt[k^2 + 2 \[Sigma]^2]
C[4])/(2 \[Sigma]^2) - (
E^(1/2 t Sqrt[k^2 + 2 \[Sigma]^2]) k u \[Theta] C[5])/(
2 x^(3/2)) + (
E^(1/2 t Sqrt[k^2 + 2 \[Sigma]^2]) k^2 u \[Theta]^2 C[5])/(
2 x^(3/2) \[Sigma]^2) + (
3 E^(1/2 t Sqrt[k^2 + 2 \[Sigma]^2]) u \[Sigma]^2 C[5])/(
32 x^(3/2)) - (
E^(-(1/2) t Sqrt[k^2 + 2 \[Sigma]^2]) k u \[Theta] C[6])/(
2 x^(3/2)) + (
E^(-(1/2) t Sqrt[k^2 + 2 \[Sigma]^2]) k^2 u \[Theta]^2 C[6])/(
2 x^(3/2) \[Sigma]^2) + (
3 E^(-(1/2) t Sqrt[k^2 + 2 \[Sigma]^2]) u \[Sigma]^2 C[6])/(
32 x^(3/2)) - x g[x, t] +
\!\(\*SuperscriptBox[\(g\),
TagBox[
RowBox[{"(",
RowBox[{"0", ",", "1"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, t] - k x
\!\(\*SuperscriptBox[\(g\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, t] + k \[Theta]
\!\(\*SuperscriptBox[\(g\),
TagBox[
RowBox[{"(",
RowBox[{"1", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, t] + 1/2 x \[Sigma]^2
\!\(\*SuperscriptBox[\(g\),
TagBox[
RowBox[{"(",
RowBox[{"2", ",", "0"}], ")"}],
Derivative],
MultilineFunction->None]\)[x, t]}` . My objective is to obtain a list `{0, 0, 0, 0, 0, 0, 0}` . That being said on position P[[6]] I have `Simplify[ P[[6]] ] ` which outputs `0` . From P[[7]], I want to obtain the values of `\[Kappa]` , `\[Sigma]` , `\[Theta]` such that `(E^(-(1/2) t Sqrt[
k^2 + 2 \[Sigma]^2]) u (16 k^2 \[Theta]^2 -
16 k \[Theta] \[Sigma]^2 +
3 \[Sigma]^4) (E^(t Sqrt[k^2 + 2 \[Sigma]^2]) C[5] + C[
6]))/(32 x^(3/2) \[Sigma]^2) = 0
Firstly I want to put together like terms of g[x,t]
and equate to 0. This is my attempt ReplaceAll[g[x, t] -> 0][EDs[[7]]] (* This syntax is not correct *)
, but it is not correct. Then from this level, it is to obtain the real values of \[Kappa]
, \[Sigma]
, \[Theta]
so that I end up with a list {0, 0, 0, 0, 0, 0, 0}
.