Hi Gerald,
I learned these things back in the 1980s, some facts as an undergraduate but mainly in graduate school from lectures. The professors sometimes recommended books as ancillary materials, but only a few used books as textbooks and followed them. Further, I've been at an institution teaching only 1st and 2nd year students for 30 years, so I haven't taught this or related material for a long time. Nonetheless, I can give you some recommendations, but I personally have not field-tested them, so to speak.
Integrals of the form (2) first showed up for me as an undergraduate in physics. Integrals with the square of 3rd and 4th degree polynomials are called elliptic integrals. The arc length of an ellipse can be expressed with such an integral, hence the name, and they first came to the attention of mathematicians in the mid 18th century. They were studied somewhat intensely in the early 19th century by Gauss, Jacobi, Legendre, and in particular by Abel, who extended the scope to include integrals involving square roots of higher degree polynomials. These are called hyperelliptic or "Abelian* integrals. Much knowledge of them was developed before the Riemann sphere or topology was even invented. These facts give you some keywords to google, but they also warn you that you will find a lot of information about (2) not relating to my remarks above.
I came to know more about elliptic integrals from a sideways direction. I was studying number theory and algebraic geometry in grad school; in particular, "elliptic curves" was a hot topic. They come from the square-roots in the elliptic integrals, that is, curves of the form
$y^2 = \text{cubic or quartic}$. In the 1980s, they were thought to hold a key to proving Fermat's Last Theorem (which turned out to be the case). They also yielded a powerful factorization algorithm, which was important because of the then relatively new RSA encryption algorithm. It's truly amazing the connections the integral (2) has to seemingly unrelated branches of mathematics.
It turns out there is a book that "does it all", or almost:
Elliptic Curves: Function Theory, Geometry, Arithmetic by McKean and Moll
The book was recommended to me by a friend, and on that basis, I am recommending it here. It gives an explicit construction of the differential manifold structure on the Riemann sphere, which is fairly simple, considering. It also gives a definition of manifold. So it covers everything that is necessary. However, it is question in my mind whether, having given someone the needed tool, they will know why, when, and how to use it. But it's less likely to be a problem than the general case, because the goal is to understand this manifold, namely the Riemann sphere, not manifolds in general. That aside, it covers elliptic integrals, elliptic functions, elliptic curves (though not the connections to Fermat's Last Theorem and factorization), and a few other things.
For differential topology, it's a bit harder to suggest a book. Many assume the reader is familiar with topology, especially manifolds. General introductions to topology include manifolds and much else that isn't strictly necessary for the question at hand. The following was my undergraduate textbook. I remember liking it and using it as a reference in grad school from time to time. And it seems to have the right scope, at least through, say, Chapter 5, which covers differentiable manifolds:
Singer and Thorpe, Lecture Notes on Elementary Topology and Geometry.
This Math.SE Q&A contains some good recommendations:
https://math.stackexchange.com/questions/46482/introductory-texts-on-manifolds
These two have a good reputation:
- L. Tu, An Introduction to Manifolds (includes differentiable a.k.a. smooth manifolds†)
- John M. Lee, Introduction to Smooth Manifolds
†Note: Usually there is a slight difference between these two; however, every smooth manifold is a differentiable manifold.
I hope that helps.