(*Define variables and functions*)ClearAll[t, x, alpha, s, f]
t = Symbol["t", Positive -> True];
x = Symbol["x", Positive -> True];
alpha = Symbol["alpha", Positive -> True];
s = Symbol["s", Positive -> True];
n = Symbol["n", Integers -> True];
f[n_, x_, t_] := f[n][x, t];
(*Define Elzaki Transform*)
elzakiTransform[func_, var_, transformVar_] :=
Integrate[
transformVar*func*Exp[-var/transformVar], {var, 0, Infinity}]
(*Define Inverse Elzaki Transform*)
inverseElzakiTransform[transformFunc_, transformVar_] :=
InverseLaplaceTransform[transformFunc, transformVar, t]
(*Define the functional correction method*)
correctionFunctional[fPrev_, x_, t_, alpha_] :=
Module[{delayTerm, rhs, transformedRHS, correctedTransform,
correctedFunction},(*Define the delay term*)
delayTerm = fPrev /. t -> t - 1;
(*Define the RHS of the equation*)rhs = x^2*t - delayTerm;
(*Apply Elzaki Transform to RHS*)
transformedRHS = elzakiTransform[rhs, t, s];
(*Multiply by s^alpha for fractional derivative correction*)
correctedTransform = s^alpha*transformedRHS;
(*Apply inverse Elzaki transform to get back to time domain*)
correctedFunction = inverseElzakiTransform[correctedTransform, s];
(*Add the initial condition x^2*)correctedFunction]
(*Example:Initialize f_0(x,t)*)
f0 = x^2;
(*Compute iterations*)
iterations = 3;
fPrevious = f0;
For[i = 1, i <= iterations, i++,
fCurrent = correctionFunctional[fPrevious, x, t, alpha];
Print["Iteration ", i, ":"];
Print[TraditionalForm[fCurrent]];
fPrevious = fCurrent;]