The 'largest small octagon' is the 8-sided polygon of unit diameter having largest possible area.
In 1975, Ronald Graham found a closed form expression for the area of the analogous hexagon -- a root of an irreducible degree 10 polynomial (found here).
In 2002, Audet et al. found the value of maximal octagon area to be ~0.726867 and as far as I could find, no closed form expression has been found.
Below is a picture of the maximizing hexagon and octagon (found here): 
Here, the red lines indicate the vertices a unit distance from each other.
If we make some assumptions on symmetry, we can have simplified labels of the octagon's vertices and come up with constraints on them:

Our constraints will
Place bounds on location:
0 < x1 < 1/2 && 0 < x3 < 1/2 && 0 < y1 < 1/2 && 0 < y2 < 1/2 && 1/2 < y3 < 1
Add unit diameter constraints:
(x1 + x3)^2 + (y1 - y3)^2 == 1 && x1^2 + (y1 - 1)^2 == 1 && (1/2 + x3)^2 + (y2 - y3)^2 == 1
We aim to maximize area, which is given by:
x3 - y1/2 + x1 y2 - x3 y2 + y3/2
Unfortunately a (symbolic) call to Maximize
did not return a result in a reasonable amount of time:
area = x3 - y1/2 + x1 y2 - x3 y2 + y3/2;
bounds = {0 < x1 < 1/2, 0 < x3 < 1/2, 0 < y1 < 1/2, 0 < y2 < 1/2, 1/2 < y3 < 1};
cons = {(x1 + x3)^2 + (y1 - y3)^2 == 1, x1^2 + (y1 - 1)^2 == 1, (1/2 + x3)^2 + (y2 - y3)^2 == 1};
Maximize[{area, Join[bounds, cons]}, {x1, x3, y1, y2, y3}]
(* $Aborted *)
Numerical optimization works nonetheless but slows down quickly as working precision goes up:
NMaximize[{area, Join[bounds, cons]}, {x1, x3, y1, y2, y3}, WorkingPrecision -> 1000, MaxIterations -> 1000]; // AbsoluteTiming
(* {675.194, Null} *)
To get higher precision results faster, we can do some symbolic preprocessing to reduce our parameter space:
cons2 = Reduce[And @@ Join[bounds, cons], {x1, y1, x3}, Reals, Backsubstitution -> True][[1]];
area2 = area /. ToRules[cons2 /. _Inequality -> True];
res10000 = NMaximize[{area2, cons2 /. _Equal -> True}, {y2, y3}, WorkingPrecision -> 10000]; // AbsoluteTiming
(* {7.24073, Null} *)
Notice the ~100x speedup despite increasing the working precision itself 10x.
Since the call to Maximize
didn't work, we can take matters into our own hands:
Formulate the problem through Lagrangian multipliers:
consdiff = Subtract @@@ cons;
L = area - {λ1, λ2, λ3}.consdiff;
ds = D[L, #] & /@ {x1, x3, y1, y2, y3};
cons3 = Join[ds, consdiff, {area - m}];
Use GroebnerBasis
to find a polynomial relation (the magic step):
gb = GroebnerBasis[cons3, {m}, {x1, x3, y1, y2, y3, λ1, λ2, λ3}];
MatchQ[gb, {poly_} /; PolynomialExpressionQ[poly, m, NumericQ]]
(* True *)
Select the valid root as the area maximizer, and verify it symbolically:
Length[sols = Solve[gb[[1]] == 0, m, PositiveReals]]
(* 9 *)
solQ = ParallelMap[
Solve[
Join[Thread[cons3 == 0], bounds, {m == (m /. #)}],
{x1, x3, y1, y2, y3, λ1, λ2, λ3, m},
Reals
] =!= {} &,
sols, Method -> "FinestGrained", ProgressReporting -> True];
roots = Pick[sols, solQ];
MatchQ[roots, {{m -> _Root?Positive}}]
(* True *)
root = m /. roots[[1]]
(* Root[-478425365462547737405343343 + 3773041038347596515021000956 #1 +
<< ... omitted for brevity ... >>
2605602600411474165760 #1^40 - 442721857769029238784 #1^41 +
147573952589676412928 #1^42 &, 11] *)
Verify numerically with the previously calculated 10000 digits:
res10000[[1]] - root
(* 0.*10^-10001*)
And display the value of the maximal area in a more readable way:
Column[{Style[MinimalPolynomial[root, x] == 0, GrayLevel[0.15]],
Row[{"near ", TildeTilde[x, N[root]]}]}, Spacings -> 0.5 {1, 1}] // TraditionalForm

We can also use this method to derive the formula for maximal area unit diameter hexagon:
area = 1/2 - 1/2*y1 + x1*y2;
cons = {x1^2 + (y1 - 1)^2 - 1, (1/2 + x1)^2 + (y2 - y1)^2 - 1};
L = area - {λ1, λ2}.cons;
{d1, d2, d3} = D[L, #]& /@ {x1, y1, y2};
GroebnerBasis[Join[{d1, d2, d3}, cons, {area - m}], {m}, {x1, y1, y2, λ1, λ2}]
(* {11993 - 78488 m + 144464 m^2 + 1232 m^3 - 221360 m^4 +
146496 m^5 + 21056 m^6 - 30848 m^7 - 3008 m^8 + 8192 m^9 +
4096 m^10} *)
Notice this is the same polynomial Graham found.
Lastly, Foster, et al. (2007) tells us which vertices in the biggest little even sided n-gon are unit distance from each other. For the decagon, it looks like this

and gives the following constraints and corresponding Lagrangian multiplier setup and call to GroebnerBasis
:
area = x4 - x2*y1 - y2/2 + x1*y2 + x2*y3 - x4*y3 + y4/2;
cons = {
(x1+x4)^2+(y1-y4)^2 == 1,
x1^2+(y1-1)^2 == 1,
(x2+x4)^2+(y2-y4)^2 == 1,
(x2+1/2)^2+(y2-y3)^2 == 1
};
L = area - {λ1, λ2, λ3, λ4}.(Subtract @@@ cons);
ds = D[L, #]& /@ {x1, x2, x4, y1, y2, y3, y4};
GroebnerBasis[
Join[ds, Subtract @@@ cons, {area - m}],
{m}, {x1, x2, x4, y1, y2, y3, y4, λ1, λ2, λ3, λ4},
Method -> "GroebnerWalk"
]
The output of GroebnerBasis
is a degree-152 polynomial in m
, one of whose roots corresponds to the maximal area. This root is approximately 0.749137
, a 1.961%
increase in area over the regular unit diameter decagon.
Here is the exact form of the root:
Root[
550889780823136797957507723511972524895427242074993891937298355176558497474466417328526706272419716609053206579306974468494879127
- 41559711898973036622753555013321849453348491961662045472133332755351309435492704885947540101318827391699360592753208318810125774718*#1
+ 1065963350839149736288200008305070582140006819068846892409131300657379252488635326883422426434726227830299632967984821057350931506198*#1^2
- 13375049592828902988764230367803264224214861704481682357510659152362505984397416660843930233056123730645026698151214182624078986714128*#1^3
+ 74578822372032351529299179587428053626366636762844327606991759386125665049593288636844316395337108663688987161033332032927349057508000*#1^4
+ 41555123203653105835292990176072324487402130809267141347506777167570357628959587525291809671105171844912298958389760307501911261288464*#1^5
- 2504271069248116115349964066436843256979031869577939816643073763769332259309952361407067121375132695076852335329507885550085128753943672*#1^6
+ 9355226809241985949108306372748678833700684776538492415188622572682428759334816732934402676096883006169800309075381855460560170258666912*#1^7
+ 6785253645420863352738113620908767341749246842518706016005928952773546066744064885992777249586274767523647882393848539173726413035731512*#1^8
- 119742703713761477122969820854536797247586927278416343170611205153075704159512130778195747829192407904284945512443565530942703073416494912*#1^9
+ 281262475814205594892042176684392939237873591227983740810664539940668071976844557043283845150149993925367117492414387839751654261077999296*#1^10
- 245611452956611669128047930483404983007190274011915098010367804970152429897878927664525417397060960727160021733013846609531072652453251008*#1^11
- 856739812895278063251757637852645639375329750017913620468072798195499499715617755305718071355956375517217645747601279517517676292055669472*#1^12
+ 10578585938800364043736225963493466308735483576190618410045168374584740399018871324203209493611233487958582072271867720454440342028837648128*#1^13
- 37852620470100605721909443390470977345936696639358159684071265106850246421876208042059403089502550062582563437000071587973831516396570543616*#1^14
- 12734113765858623306827083525875197746247978640279349211686469716048101756555354013000920002981954078772270764378996220379838042663374139904*#1^15
+ 432091534389039000357992567317779225969741839936554352292492094340383657462510459899817272349232455701106080208198675117608169176288644703232*#1^16
- 841760434787224048098674448869461572903868676077892988364068338436467017572475853733176285293066056469191812994794189766457490401179837251584*#1^17
- 1593441786201215142815293155666172060187112861347202616428691342689918278670240125758196885682154831143521183493979763032318099697977486796800*#1^18
+ 8171459385377387023346721286133893945521740593935633729610203045851035037666842952246214908566616456534579785911025333688124303152606231355392*#1^19
- 3577728648349670830101991999952107227424896186782954690492830378287613884167790434132464402000129556558815863079767691149995917211288430991360*#1^20
- 36194460132546395016220505735242334243314508195403082607174136103681663774760974461346140352860206571027741840658900616564705480696406213394432*#1^21
+ 62967293424796599348074650316619499102292103171886192008761904614386394216566762736366734342797048345475360650990247733508615190844391489454080*#1^22
+ 70997118261863054107582967330241534109718936252637638648341415331459066927337848768344369084986081516171679982369755346518371426685316371972096*#1^23
- 308761476049863954894379342517479536329367933425591349149773930328512569923438390494922621854503656464435809164433628982612747278475119374237696*#1^24
+ 88242538142732722691811648312651921763364701206306940835096551276421748274771926755421237643385966670730098124887690464568843303012420855791616*#1^25
+ 839203204905683543190126924869712159502109399989984813911293752345145304955281870914723955328216166831571725725158909265754713742295235325067264*#1^26
- 1023923948670561110385296200439391041843607840092810670463207276344542232860544882114685197104881342640131249495541379486206376883667804714172416*#1^27
- 1190580416385867493459065299570906030153383673593566129635039280530147755864255617338986800057508268866554883250333121439458510396180536738447360*#1^28
+ 3356980862733222057521475289624781846047800146067387488126824234980897106404115188354736942624980192491837304568128692042307785206715560568553472*#1^29
- 211534844678589825679229555979959120091183270535232867332374219005222472928299390800337131926011987900958091855171547619583025335920694184116224*#1^30
- 6358799147792009186479329066859624743888293481065888654353407259796854649220540795423998231341964585862477523382475043851858391062115982709358592*#1^31
+ 5138792145980973797730593005908959628373467905403253419377008322280501608711600700536917405241904821282181217031021753923466689872163168766132224*#1^32
+ 6844655636118027114388153145105935020544064258827499078673152204340690688880929356596691019543794736955708885912312171286622258013954928438935552*#1^33
- 12641770981932896461928600855670368278351279433597295192283780522318489637571455534153798632849957713491889590410502451582520170976359667034226688*#1^34
- 1288537160940070732643700329892784815800220262648637558953847000555996028548456510313192807322785688123329834786236345276471671362294092950142976*#1^35
+ 17514160062674470710272546432263105987584268486929207847476660698583108671804175019124315775093374664012500466219609789786239836923749293658996736*#1^36
- 9264195426530619112285125186669548709124646724885002143216311076318543925333869938157582946064549349924023095701951242055438838360440106553180160*#1^37
- 14400318385329526239153974036517009407324577544216000547470454407784042509862139801522964052736605644342050310729052278474080440078000282455244800*#1^38
+ 17964454495178411425407055620135831322535784697819011215988267884082542373362264364008799501850751046829963483974026125228826794132290845005578240*#1^39
+ 4348750173648029350940483570214351190402862612886863587983158458150149936774885224396599595076207801142822205022447065904033304917311208021819392*#1^40
- 18560040113130148551005860074337195069126245618474566073569475945972172527876136797043381755516092115941578415203761516711300570773982329173966848*#1^41
+ 5357420025975901812437894918090303428083565564789617494345653830508697014839051989696320375436147289423897175487814800223181655022966332878487552*#1^42
+ 12084663588687728217497205034112297739314096300725327641905029053880789034230838496418410400974746806345674876009488946779293991088413087128092672*#1^43
- 8996245560310950744318347342849869337788983897863965820140073624538787418693927974045267356845693628156765936809156015338033962514138705013243904*#1^44
- 4706085139711718117427894145841306089004300482684134260626716703598664961096613776705149763487625361914540269622675304415680275957939170256617472*#1^45
+ 7344656611350528037581903770438934116273996717916623323550003037326072996916168531514982822704508790854247275807478133041053297994219932828565504*#1^46
+ 520178662055530242365535205857466055968636795767595548402226843480745390893767675321609373274379896433157847215264220537542358719349643370561536*#1^47
- 4307406169785671672137197117649137120534776999207261694120505061542727383026427137858691771078249807165462612962595124979720532278534230574628864*#1^48
+ 756334835894024377299858127442973265734874368086381433710303486100338320328155412018470755509110536986894065488400167410919789606208072518205440*#1^49
+ 2107468183932036746389498904121146288112424342495559513435536184902175768788672423167809651150137454216539869766384201435841020815042920709095424*#1^50
- 799216731944493172260423029668824296513344910448726047035235212550100256049116109417089195990936050245434940650809654195395539794743417716604928*#1^51
- 896055110367759268006852076612694871535986055299045664860719226135804876011019548982287414707175441721640820732467690494259204253364886635020288*#1^52
+ 529529808105907499599109595118960055591458144291263570682522065132554347112456208135132208237965131012404954308974262367223031914003104217956352*#1^53
+ 324776816604502821423297241853916828182811808108570850036015322320877442692855366801148662947994472674227324122146816029742072940700137152315392*#1^54
- 268958542607928447311735274561209374225664575440084986122878349647921604690222370475497221328826329432716510702190852053813460473998076553461760*#1^55
- 109127571828590060191548199680745487220299671708099808897187088159252348816000651088662392075941979816640825328987466069966041080447025266294784*#1^56
+ 118208167189484262781408363758469381747009551367199667995335552036563933477065609062995104770379714489268438020525990911120468402069529136463872*#1^57
+ 37263416545403916865861328165443228870762458396603189521174071634700001279745579602182259310490361943148893397201050952394204895005195301289984*#1^58
- 49619020388138836640785394851720098293831115237918232780596554318047705673359157173978063628337251440680302444669263334141686429579872347095040*#1^59
- 11419284338242524364421966801372513751011736750300676335899249315279823762950257302456065753733625232280433260439072787023101698732789015248896*#1^60
+ 18837969963907082024529409852631662603229421862107543796664963307318837982396789682213758042169551021381488258780542958894696612031666203918336*#1^61
+ 3529255432851795500414530600407261027781068015788010331220511745860135513007080168330887726485825321895192929257412092559583986712099325739008*#1^62
- 6615828062887870695719065092463748220198721257208030146896312771169914932927465489189406483907381545282505790819162894285213920161503291375616*#1^63
- 1242778441098172608869866735076324907514601591480331949171952068967220746215512822456437625407508353778482384015200066826377677223621407277056*#1^64
+ 2296628890447150546635823679501151638579060858657184984531546347072656754911614796581151666347271156682681194602303444653940264398891832573952*#1^65
+ 379093318972667320936690831643472502895162997303760404834625938960538650231163011050517267644222151784797416828573732002419620320162252587008*#1^66
- 716637371306313961087284059996870204557879838524449515241038604940404658991070731737864072958754912912068023240256150420100940433508221845504*#1^67
- 132362209684985716037832887307771668384094905699479463920808681374075990961327265041262382811824799479660866522979033028082955047931280883712*#1^68
+ 214480834991555829575507075910921883874605511945777344660065621253085717902022037103681892725668747646104439044998691168455811340712783380480*#1^69
+ 46118753783798249056688541082585477541182858007447783807779921401701863161356539710018211639875706797377821958078385430907580980254834950144*#1^70
- 62018575522402665475160494455925750620090748620158996544049239139900692936895602557997668785035395213713290458396923584979748787339187453952*#1^71
- 13937668763749864326535854821047578508807002208641107872003515958328467770517109252301581070498178786943970077414393202255032683352505188352*#1^72
+ 15851681028252486638503712124090532539057799797332997465576940768074514661377947210277188298989114054981324187631516386861144372745376628736*#1^73
+ 4604164647103676164224804046386650540245072552762084754760490786330316498577808294719591276398926247508591611675742653746783813235940261888*#1^74
- 4008395115550477474914795300669489303158173047883674957422444954864674214973749758843182759353375530630365011461623677377869362392492670976*#1^75
- 1304587821320443710229380955544008720104599238904461807208026350051984172801169113558893010494620461088224749369613319919047544633011732480*#1^76
+ 913140536210702103002870018550222901991541169881943569789621674779887837213460939329181621628470026101115125719337131368787793959553335296*#1^77
+ 349173268174053620553562450431453789780207092082226074694253857344442058795110490833058787115676206190154902442979228559959701381841944576*#1^78
- 186710327986979333012959536530395351652105755055810630509502495226803848926486574807603283852896536487487704046274823256775916885603516416*#1^79
- 91584630794844056039704431292576968225111760686712368690422350674450188466878759829293900779994255756025554842216934197873954902819995648*#1^80
+ 37615066921315839354394035167043473670747944687458292334208359430079164025002466118395536976043161063985261126234858062165568192021266432*#1^81
+ 20305909125313995408555652027704641620733116649746783216329379311471874453228806225152469037264908677065137803169620451236046625214300160*#1^82
- 6127781514622767912893998973909763201722696844047203954086710344446086319088337508981791627940684425762491858752986631303163168715440128*#1^83
- 4500379825100600830219444144824194191987870349177864487789282225322417000939672576145380528046030358113255557950854586565449376040222720*#1^84
+ 966903602097557060234777967927377978957395221153727069686598864102168373101677346051048843854060440046076998198886313756788862159421440*#1^85
+ 882107019894858279628826906738498874057992610654621246534226177027026528981507627427858277794063016795904559807698122357681080114348032*#1^86
- 129023586611281199344292064041155854464197547061837028291284926375658669868318532395181875059725401311154734463216692965721282571141120*#1^87
- 157173939385068988590929166627090406736194726648495264118856557385905091795164106655067730804629832206252536966485896065665038112784384*#1^88
+ 11365458820172041603429872278000504768253084174292227688344844726799176518722550940463264949463095215357939664440008938100066606907392*#1^89
+ 27412785388424954867067763478245863436098836751387129353479481151674987430805011981489620088310334669915362790797377928526251337711616*#1^90
- 846627872761393089251922967764351898026905935253448807954226135008676104662324827745771536870998889906903408131907072725605683298304*#1^91
- 4129136070896957743286404338447988650050142529514924797489482554525173976588195076763965900925465119169444276359580864265408529563648*#1^92
- 117534310711241957745907481322188508759494569005070418790904996194836773139821413187550481425520242016624722947513392586439746650112*#1^93
+ 600390294290438999339675988921831008559599654156375275202459227882629944349759475670621825702334436270426388945389934870886629769216*#1^94
+ 50192923018815370326349968215933178464365076546779074524812429634397306632914222371478534212738868952252961035833020345617146183680*#1^95
- 83428302664946243748308630495163232428699635948533992933089308606368309811600268998012649146755430368493352219474688613508706205696*#1^96
- 9035451754151675646128882828546254334061322408789120097063236838582198892272185435448375955153674814836080116542026376834216624128*#1^97
+ 9405067899726620827757617321554398206033314221629933923925627237645400390600405729863186525701237385428302076411568825537887469568*#1^98
+ 2006771014475215127461800323650159496406420655942279291933368613880593779450460713929791293750741418363863324737763167860273709056*#1^99
- 1160337440580758799275498053648941668541992447349243435839190423880152001418780406353652629058905996482587341961166346897038770176*#1^100
- 264310660783873821875148142935498076325384663205696162235674669285248181977605383082808702123965656633106728604851320842230956032*#1^101
+ 110714080641436874638789665003715264422256759964354920725861538614227553050884370288382374997699896678009217014206469918582374400*#1^102
+ 34977234490124295598466453420229503930453403296960072502617066716675093977817475358003486625839880266607739331316607367260405760*#1^103
- 8518892228003710952284874538137767213579572252600533693920775903458151274007553461681689355902346203101127983577124220876881920*#1^104
- 4996544535620747872283820094463200545302721732649610910572652431892636717613966348208519449047219793383965155265478595132260352*#1^105
+ 948280720653297873734870495184476818060110577271688129669468996494071629295535881101399637991323436403356422991742223150743552*#1^106
+ 389882867369990150495975946019722737623341122581417876159322951441826934189063652050910936917275008352836815697587667854163968*#1^107
- 6301592830438631559488386225980385289827324504887625513533953045252135192371578634378989716936813261824923347093190613139456*#1^108
- 51138199540139293659277591258016099118388485941009026830688322880145681519045954985583824028950446182459620880878904400674816*#1^109
- 441094244926346202519505792448383682855689378605719739685099117415438835440863823632114656085117387522380071507030406332416*#1^110
+ 3932171952715309956504354893394694593294905620575173829084443086563954341003670885942492833076410202604241954233313421950976*#1^111
+ 156056459026229720941397167487973496386456642379777853740145134828549637120662623803518078461592078472793846313526946168832*#1^112
- 97302142929705323993496631754305311887947135146099774809537709839171764646377937564390289609128577078486866496175474737152*#1^113
- 101701512450377403805702465192422219914187145723090307332495729275157297139755628190447218046526260584521714027200881098752*#1^114
+ 25700076000340743352330816792095064007085815641150925379661922104714508503838449812204585801233495819288998207465724051456*#1^115
- 105134795383039014907922601373314374395744574840698356022213979199751817221333761998443944198334801463400119811256090624*#1^116
+ 742215361091106490067324596207671356313635345617957522436826839632134685396393539226757720730962165646657468871531823104*#1^117
- 335869935688325930654278198292387850440862902171677168226435762431957681908577619661456087037986275045786474714717224960*#1^118
- 41166508419978386278893625030814610798003222939127650873707256318109703227842731240885859464179561737606451630232829952*#1^119
+ 31078645947174035587520172806896030207126721808984074000044363333023207645342052274308882217808682395255548270572732416*#1^120
- 7766135549821523332515152312853226778907186797822784509774323540220519603735591588940013802149301879279912032617365504*#1^121
+ 2954782696794961915496646160082076380495336688742103217735073048364868983447222686509061071832498229016186586463731712*#1^122
- 981473946045026696997351752014497441670516531503478145855138251504788821430027282736867452828598256480539140836818944*#1^123
+ 219298028164720868412123502676411735733208247207022644385278112182217023144270676996133620990457016499228003459399680*#1^124
- 43602836961910530418910948318742239939207694228467590385510346095432112135858284408370758791770588063675329739227136*#1^125
+ 8324339823239154896050672914440872448582668023682700319796026560309676547895722487174852348058519819452112164618240*#1^126
- 984303339796514207638764453240006294012087638872723779320824321635134597291964124730982177896553324049026728853504*#1^127
- 28694144352764066272887572154537336649030966710460034594489494348963496530661008445290428288248462409794790096896*#1^128
+ 53035635363709408747746215132052001904224766137118451677611243737272607635827327604222623401968379542602082418688*#1^129
- 18927394090997381000189688807704236131548926486999789178671522446583390337177205325424824649406831812154885144576*#1^130
+ 4987393052183838262753269883054101583975148066753405239950089162579418361733535400738187523350506723952054763520*#1^131
- 1032374368236919443041474599629250591785593771330333510814326068875616096916244344125095640918691357102448836608*#1^132
+ 187129889819738588611285794466242336160372868806928223175080153294299087481540952189667773730859512822495182848*#1^133
- 29800070831316164545677790143576630425851932634776020512348466969822937051857244935599990327038338236124495872*#1^134
+ 4613744799426943192223302586504293267836400192791206805823701767736499958035691098334562635100912745313206272*#1^135
- 717083762719257003378389034094938980100964672628992601557132263233711251583927388413060959181540088472403968*#1^136
+ 122117437962763135515337426463364059783096294141866298401095691424145585528875711298238309535162079696125952*#1^137
- 20668656165631875364181111972667698464096419921011957791798928136595090313912580641023342606487708856483840*#1^138
+ 3387231067192840227348950907611689969186829093262210403508818337608489236572386369307633664822949489672192*#1^139
- 494598752067394971520875720336183106712286610098930301280218833671794479526219184248290720942906775961600*#1^140
+ 60788568450654639592618371644844332531817740812648651208179542437282261877732556337199086449988722491392*#1^141
- 6524984851943969625021591534997967689694693141774111264515938639557731987553597751561986407176136032256*#1^142
+ 482327411150854836481113149700603092502418058995536900098875833096201713145200072891354020918629236736*#1^143
- 29247558096138042299627667583476106284451605224197320807056832421171920109240687343530967086758100992*#1^144
- 1058655202032968792575755674951588427296638077031233209798482111431964113002284029846387036115697664*#1^145
+ 273144557103854159725696263854261045643905957790406957310865653994183380793636629469624406256910336*#1^146
- 43045578926162524159740643009397046238989532293994698216853758048277802610861757701696245867741184*#1^147
+ 4640559190354763796951361381645043113896279990868044177384153215339472533649286455081767735918592*#1^148
- 260418162780805562933152457341477004462982083673459068728280905297658481895031978813646560034816*#1^149
+ 31517467983489796598020772129638039053269935528347092537659132354676126773362676324916847968256*#1^150
- 603671764361675829561034250937498855483700923339941277251139951100346133941422867830137683968*#1^151
+ 94078716523897531879641701444805016439018325715315523727450381989664332562299667713787691008*#1^152&,
24
]