It used to work when the Cp was defined as (Cor) for the integral (A).
But here the inner integration over tx
is trivial because tx is not a variable of the integrand
In[18]:= FreeQ[infectable[ti] Cor[te, Di, Dv, D0], tx]
Out[18]= True
so one could do as well
In[23]:= A1 =
FullSimplify[(Inf/N/D0)*phi*tau*
Integrate[
Integrate[(ti + Di - te - Dv) infectable[ti] Cor[te, Di, Dv, D0], {ti, te + Dv - Di, te + Dv}],
{te, -Dv, D0 - Dv + Di}]]
Out[23]= (Inf phi tau (Di (2 D0 Di^2 + (3 Di - 2 Dv) (Di - Dv) Dv) +
2 Dv ((-Di + Dv)^3 Log[1 - Di/Dv] + Di^3 Log[Dv/Di])))/(4 D0 Dv N)
in the more general case this is also true
In[28]:= FreeQ[infectable[ti] Cp[te, Di, Dv, D0], tx]
Out[28]= True
but the observation does not bring anything. How did you check the consistency (lack of contradictions) of this:
Cp[te_, Di_, Dv_, D0_] :=
Which[Di + D0 <= Dv + te || Dv + te <= 0, 0,
D0 < Dv + te && D0 + te < 0 && Di > Dv + te, Inf/(Inf + Ip),
D0 < Dv + te && D0 + te >= 0 && Di > Dv + te, (D0 Inf)/(D0 Inf - Ip te),
Di <= Dv + te && ((te == 0 && D0 >= Dv) || (D0 >= Dv + te && te >= 0)), Di/Dv,
D0 >= Dv + te && D0 + te < 0 && Di <= Dv + te, (Di Inf)/(D0 Ip + Inf (Dv + te)),
D0 >= Dv + te && te < 0 && D0 + te >= 0 && Di <= Dv + te, (Di Inf)/(Dv Inf + Inf te - Ip te),
D0 < Dv + te && D0 + Di >= Dv + te && D0 + te < 0 && Di <= Dv + te, (Inf (D0 + Di - Dv - te))/(D0 (Inf + Ip)),
D0 < Dv + te && D0 + Di >= Dv + te && te < 0 && D0 + te >= 0 && Di <= Dv + te,(Inf (D0 + Di - Dv - te))/(D0 Inf - Ip te),
te == 0 && D0 < Dv && D0 + Di >= Dv, (D0 + Di - Dv)/D0,
D0 < Dv + te && D0 + Di >= Dv + te && te >= 0, 1 + (Di - Dv)/(D0 - te),
D0 >= Dv + te && D0 + te < 0 && Di > Dv + te && Dv + te > 0, (Inf (Dv + te))/(D0 Ip + Inf (Dv + te)),
D0 >= Dv + te && D0 + te >= 0 && Di > Dv + te && Dv + te > 0, (Inf (Dv + te))/(Dv Inf + (Inf - Ip) te),
True, 0
]
if the default evaluates to 0, then the first case is useless, because it also evaluates to 0.
Have you tried to reduce that using your Assumptions:
{$Assumptions =
Di < Dv && Dv < D0 && Di > 0 && Di \[Element] Reals &&
D0 \[Element] Reals && Inf > 0 && Inf \[Element] Reals && Ip > 0 &&
Ip \[Element] Reals};
there you state Di < Dv < D0
and in Cp
you consider te == 0 && D0 < Dv
. Di, Dv, and D0 seem to be some constants. te is the dynamic variable. Despite the fact that Inf
and Ip
remain undefined, plots like
Plot[Cp[x,1,2,4], {x, -1, -5}]
do give a continous function. That suggests that most cases in Cp
are somehow useless in the Di < Dv < D0
range and possibly after simplification you could reach a result. If all that Inf
and Ip
related stuff is kicked out in a mood of jazz it came to
In[56]:= Cp[te_, Di_, Dv_, D0_] :=
Which[Di <= Dv + te && ((te == 0 && D0 >= Dv) || (D0 >= Dv + te && te >= 0)), Di/Dv,
te == 0 && D0 < Dv && D0 + Di >= Dv, (D0 + Di - Dv)/D0,
D0 < Dv + te && D0 + Di >= Dv + te && te >= 0, 1 + (Di - Dv)/(D0 - te),
True, 0]
In[57]:= infectable[t_] := UnitStep[t]*UnitStep[D0 - t]
In[58]:= {$Assumptions =
Di < Dv && Dv < D0 && Di > 0 && Di \[Element] Reals &&
D0 \[Element] Reals && Inf > 0 && Inf \[Element] Reals && Ip > 0 &&
Ip \[Element] Reals};
In[59]:= A =
FullSimplify[(Inf/N/D0)*phi*tau*
Integrate[
Integrate[
Integrate[
infectable[ti] Cp[te, Di, Dv, D0], {tx, te + Dv, ti + Di}], {ti,
te + Dv - Di, te + Dv}], {te, -Dv, D0 - Dv + Di}]]
Out[59]= (Inf phi tau (Di (6 D0 Di^2 +
Dv (5 Di^2 - 15 Di Dv + 6 Dv^2)) -
12 (Di - Dv)^3 Dv ArcTanh[Di/(Di - 2 Dv)]))/(12 D0 Dv N)