Hi All, I was trying to derive a formula by evaluating an integral. I defined all the restrictions for that setting and I wanted to have the solution in terms of a simplified formula. But Mathematica did not give the solution like last time (with some modification). I was wondering if there is anyone who can help me solve this problem.
Thank you in advance for your kind attention and support.
Here is the code for the equation A with Cp and infectable functions defined in it.
Cp[te_, Di_, Dv_, D0_] :=
Which[
Di + D0 <= Dv + te || Dv + te <= 0, 0,
D0 < Dv + te && D0 + te < 0 && Di > Dv + te, Inf/(Inf + Ip),
D0 < Dv + te && D0 + te >= 0 && Di > Dv + te, (D0 Inf)/(
D0 Inf - Ip te),
Di <= Dv +
te && ((te == 0 && D0 >= Dv) || (D0 >= Dv + te && te >= 0)), Di/
Dv,
D0 >= Dv + te && D0 + te < 0 && Di <= Dv + te, (Di Inf)/(
D0 Ip + Inf (Dv + te)),
D0 >= Dv + te && te < 0 && D0 + te >= 0 && Di <= Dv + te, (Di Inf)/(
Dv Inf + Inf te - Ip te),
D0 < Dv + te && D0 + Di >= Dv + te && D0 + te < 0 &&
Di <= Dv + te, (Inf (D0 + Di - Dv - te))/(D0 (Inf + Ip)),
D0 < Dv + te && D0 + Di >= Dv + te && te < 0 && D0 + te >= 0 &&
Di <= Dv + te, (Inf (D0 + Di - Dv - te))/(D0 Inf - Ip te),
te == 0 && D0 < Dv && D0 + Di >= Dv, (D0 + Di - Dv)/D0,
D0 < Dv + te && D0 + Di >= Dv + te && te >= 0,
1 + (Di - Dv)/(D0 - te),
D0 >= Dv + te && D0 + te < 0 && Di > Dv + te && Dv + te > 0, (
Inf (Dv + te))/(D0 Ip + Inf (Dv + te)),
D0 >= Dv + te && D0 + te >= 0 && Di > Dv + te && Dv + te > 0, (
Inf (Dv + te))/(Dv Inf + (Inf - Ip) te),
True, 0]
infectable[t_] := UnitStep[t]*UnitStep[D0 - t]
{$Assumptions =
Di < Dv && Dv < D0 && Di > 0 && Di \[Element] Reals &&
D0 \[Element] Reals && Inf > 0 && Inf \[Element] Reals &&
Ip > 0 && Ip \[Element] Reals };
A = FullSimplify[(Inf/N/D0)*phi*tau*
Integrate[
Integrate[
Integrate[
infectable[ti] Cp[te, Di, Dv, D0], {tx, te + Dv, ti + Di}], {ti,
te + Dv - Di, te + Dv}], {te, -Dv, D0 - Dv + Di}]]
It used to work when the Cp was defined as (Cor) for the integral (A).
Cor[te_, Di_, Dv_, D0_] :=
Which[Di > Dv + te && Dv + te > 0, 1,
te >= 0 && Dv + te <= D0, Di/Dv,
te < 0 && Di <= Dv + te && Dv + te <= D0, Di/(Dv + te),
te < 0 && Dv + te > D0, (Di - Dv - te + D0)/D0,
Di + D0 < Dv + te || Dv + te <= 0, 0,
True, 1 + (-Di + Dv)/(te - D0)]
infectable[t_] := UnitStep[t]*UnitStep[D0 - t]
{$Assumptions =
Di < Dv && Dv < D0 && Di > 0 && Di \[Element] Reals &&
D0 \[Element] Reals && Inf > 0 && Inf \[Element] Reals &&
Ip > 0 && Ip \[Element] Reals };
A = FullSimplify[(Inf/N/D0)*phi*tau*
Integrate[
Integrate[
Integrate[
infectable[ti] Cor[te, Di, Dv, D0], {tx, te + Dv,
ti + Di}], {ti, te + Dv - Di, te + Dv}], {te, -Dv,
D0 - Dv + Di}]]
Here is the result from that equation
1/(4 D0 Dv N)
Inf phi tau (Di (2 D0 Di^2 + (3 Di - 2 Dv) (Di - Dv) Dv) +
2 Dv ((-Di + Dv)^3 Log[1 - Di/Dv] + Di^3 Log[Dv/Di]))
Reply to this discussion
in reply to