Group Abstract Group Abstract

Message Boards Message Boards

0
|
6.8K Views
|
3 Replies
|
0 Total Likes
View groups...
Share
Share this post:

Unknown error in NDSolve and other issues

With the help of NDSolve I try to solve a very simple BVP:

$Av''(t)+Bv(t)=f(t),$

where A, B are 5x5 constant matrices, f(t) — 5-dimentional vector with components composing of InterpolatingFunction(s). Each component of solution should satisfy:

$v_i(0)=1,\ \ v_i(1)=0.$

The system is enough "good" for solving, matrices A,B are not singular, but I get strange error:

enter image description here

Moreover, last error (NDSolve::bvaux) cannot be found anywhere!

Any suggestions are welcomed. The code is below and A, B, Cv in attachment.

NDSolve[{A[[1, 1]] v1''[t] + A[[1, 2]] v2''[t] + A[[1, 3]] v3''[t] + 
    A[[1, 4]] v4''[t] + A[[1, 5]] v5''[t] + B[[1, 1]] v1[t] + 
    B[[1, 2]] v2[t] + B[[1, 3]] v3[t] + B[[1, 4]] v4[t] + 
    B[[1, 5]] v5[t] == Cv[[1]], 
  A[[2, 1]] v1''[t] + A[[2, 2]] v2''[t] + A[[2, 3]] v3''[t] + 
    A[[2, 4]] v4''[t] + A[[2, 5]] v5''[t] + B[[2, 1]] v1[t] + 
    B[[2, 2]] v2[t] + B[[2, 3]] v3[t] + B[[2, 4]] v4[t] + 
    B[[2, 5]] v5[t] == Cv[[2]],
  A[[3, 1]] v1''[t] + A[[3, 2]] v2''[t] + A[[3, 3]] v3''[t] + 
    A[[3, 4]] v4''[t] + A[[3, 5]] v5''[t] + B[[3, 1]] v1[t] + 
    B[[3, 2]] v2[t] + B[[3, 3]] v3[t] + B[[3, 4]] v4[t] + 
    B[[3, 5]] v5[t] == Cv[[3]], 
  A[[4, 1]] v1''[t] + A[[4, 2]] v2''[t] + A[[4, 3]] v3''[t] + 
    A[[4, 4]] v4''[t] + A[[4, 5]] v5''[t] + B[[4, 1]] v1[t] + 
    B[[4, 2]] v2[t] + B[[4, 3]] v3[t] + B[[4, 4]] v4[t] + 
    B[[4, 5]] v5[t] == Cv[[4]],
  A[[5, 1]] v1''[t] + A[[5, 2]] v2''[t] + A[[5, 3]] v3''[t] + 
    A[[5, 4]] v4''[t] + A[[5, 5]] v5''[t] + B[[5, 1]] v1[t] + 
    B[[5, 2]] v2[t] + B[[5, 3]] v3[t] + B[[5, 4]] v4[t] + 
    B[[5, 5]] v5[t] == Cv[[5]], v1[0]  ==  1, v1[1] == 0, 
  v2[0]  == 1, v2[1] == 0, v3[0]  == 1, v3[1] == 0, v4[0]  == 1, 
  v4[1] == 0, v5[0]  == 1, v5[1] == 0}, {v1[t], v2[t], v3[t], v4[t], 
  v5[t]}, t, WorkingPrecision -> 50, 
 Method -> {"Chasing", Method -> "StiffnessSwitching"}, 
 MaxSteps -> Infinity]
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard
Be respectful. Review our Community Guidelines to understand your role and responsibilities. Community Terms of Use