Message Boards Message Boards

0
|
6138 Views
|
3 Replies
|
2 Total Likes
View groups...
Share
Share this post:

LogLogPlot errors

Posted 10 years ago

I have been experiencing the following problems with Mathematica 9 and also Mathematica 10:

ClearAll["Global`*"];
(* obtain constants *)
h = QuantityMagnitude[
   UnitConvert[Quantity["PlanckConstant"], "SIBase"]];
kB = QuantityMagnitude[
   UnitConvert[Quantity["BoltzmannConstant"], "SIBase"]];
c = QuantityMagnitude[UnitConvert[Quantity["SpeedOfLight"], "SIBase"]];
rIn = QuantityMagnitude[
   UnitConvert[Quantity[0.1, "AstronomicalUnit"], "SIBase"]];
rOut = QuantityMagnitude[
   UnitConvert[Quantity[10, "AstronomicalUnit"], "SIBase"]];
r0 = QuantityMagnitude[
   UnitConvert[Quantity[0.1, "AstronomicalUnit"], "SIBase"]];
\[Lambda]Low = 1*10^-6;(* Meters *)
\[Lambda]High = 10*10^-6;(* Meters *)
T0 = 1000;
\[Alpha] = -3/4;
a = T0/r0^\[Alpha];
F\[Lambda][\[Lambda]_] := 
  NIntegrate[
   4 \[Pi]*(h*c^2)/\[Lambda]^5*r/(
    Exp[(h*c)/(\[Lambda]*kB*a*r^\[Alpha])] - 1), {r, rIn, rOut}];
LogLogPlot[
 F\[Lambda][\[Lambda]], {\[Lambda], \[Lambda]Low, \[Lambda]High}]

Now this returns:

NIntegrate::inumr: The integrand (7.483543*10^-16 r)/((-1+E^((3.36356*10^-13 r^(3<<1>><<1>>))/\[Lambda])) \[Lambda]^5) has evaluated to non-numerical values for all sampling points in the region with boundaries {{1.49598*10^10,1495978707000}}. >>

NIntegrate::inumr: The integrand (7.483543*10^-16 r)/((-1+E^((3.36356*10^-13 r^(3<<1>><<1>>))/\[Lambda])) \[Lambda]^5) has evaluated to non-numerical values for all sampling points in the region with boundaries {{1.49598*10^10,1495978707000}}. >>

NIntegrate::inumr: The integrand (7.483543*10^-16 r)/((-1+E^((3.36356*10^-13 r^(3<<1>><<1>>))/\[Lambda])) \[Lambda]^5) has evaluated to non-numerical values for all sampling points in the region with boundaries {{1.49598*10^10,1495978707000}}. >>

General::stop: Further output of NIntegrate::inumr will be suppressed during this calculation. >>

And then the plot. But if I use Plot instead of LogLogPlot, there are no errors.

I could redefine the function:

F\[Lambda][\[Lambda]_?NumericQ] := 
  NIntegrate[
   4 \[Pi]*(h*c^2)/\[Lambda]^5*r/(
    Exp[(h*c)/(\[Lambda]*kB*a*r^\[Alpha])] - 1), {r, rIn, rOut}];

which really hides the errors but I am more interested why this problem happens. Because NumericQ is not always the good solution. What if I want to pass infinity which does not evaluate true as NumericQ or if I am using units!

POSTED BY: Leos Pohl
3 Replies

You need a "NumericQ" checkup here in the example. Here is an article in the Wolfram Knowledge Base.

enter image description here

POSTED BY: Shenghui Yang
Posted 10 years ago

As I have mentioned at the end of the post, "NumericQ is not always the good solution. What if I want to pass infinity which does not evaluate true as NumericQ or if I am using units!"

POSTED BY: Leos Pohl

The solution is quite similar though. You just need to overload the definitions of the function under different inputs.

F\[Lambda][Quantity[\[Lambda]_?NumericQ, _]] := 
  NIntegrate[
   4 \[Pi]*(h*c^2)/\[Lambda]^5*
    r/(Exp[(h*c)/(\[Lambda]*kB*a*r^\[Alpha])] - 1), {r, rIn, rOut}];

enter image description here

POSTED BY: Shenghui Yang
Reply to this discussion
Community posts can be styled and formatted using the Markdown syntax.
Reply Preview
Attachments
Remove
or Discard

Group Abstract Group Abstract